6 resultados para in field detection
em Universidade do Minho
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 µm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil. [1] HageskaL, G, Lima, N, Skaar, I. The study of fungi in drinking water. Mycological Research, 113, 2009, 165-172. [2] Skaar I, Hageskal G. Fungi in Drinking Water. In.: Paterson RRM, Lima N. (Eds.) Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi. CRC Press, Taylor & Francis Group, Boca Raton, 2015, 597-606.
Resumo:
In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water and biofilms in drinking water storage tanks in Recife - Pernambuco, Brazil. Five sampling times in triplicate were performed at two distinct points. Colony-forming units (CFU) of FF fungi were determined with 0.45 μm filtration membranes using peptone glucose rose Bengal agar (PGRBA). From the 30 samples analysed a total of 1136 CFU were obtained. The water biofilms were collected from samplers consisting of polyethylene coupons, previously installed in the reservoirs. These coupons were transferred to PGRBA plates and incubated using with the same conditions described for free FF. For the in situ detection of FF in biofilms the Calcofluor White staining technique was used. This procedure demonstrated FF forming biofilms on the surfaces of the coupons. Brazilian legislation does not define limits for FF in drinking water. However considering the potential risk of fungal contamination, the data obtained in this study will contribute to developing future quantitative and qualitative parameters for the presence of fungi in drinking water distribution systems in Brazil.
Resumo:
Dissertação de mestrado em Ecology
Resumo:
Dissertação de mestrado em Direito Tributário e Fiscal
Resumo:
Dissertação de mestrado integrado em Engenharia Civil