27 resultados para hue discrimination

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consequences that arose from the ‘global economy’ have been significant in Portuguese children’s lives and we believe it is fundamental to reflect on the ongoing structuring of childhood through this global culture/ideology and the concrete implications that they have. It is also important to understand how childhood is constructed and experienced, as well as to consider the impacts of political economic conditions on children’s lives and in childhood in general, taking into account the effects brought on by public policies. The aim of this paper is to reflect on the ways through which the economic crisis affecting the general Portuguese population has impacted children in particular and promoted discrimination and a lack of opportunities in childhood. We will focus on two dimensions: first, on general data about the ongoing policies that have been reducing social rights, increasing poverty rates and threatening basic rights such as educational and health rights, to show their impact on children´s lives. Second, we will discuss some data collected with children throughout different research projects in order to characterize the meanings and impacts of the crisis in their lives from their points of view

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r=0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NIPE WP 04/ 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1ºCiclo do Ensino Básico

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Psicologia - Especialidade em Psicologia Experimental e Ciências Cognitivas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Gestão de Recursos Humanos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for the Standard Model Higgs boson produced in association with a pair of top quarks, tt¯H, is presented. The analysis uses 20.3 fb−1 of pp collision data at s√ = 8 TeV, collected with the ATLAS detector at the Large Hadron Collider during 2012. The search is designed for the H to bb¯ decay mode and uses events containing one or two electrons or muons. In order to improve the sensitivity of the search, events are categorised according to their jet and b-tagged jet multiplicities. A neural network is used to discriminate between signal and background events, the latter being dominated by tt¯+jets production. In the single-lepton channel, variables calculated using a matrix element method are included as inputs to the neural network to improve discrimination of the irreducible tt¯+bb¯ background. No significant excess of events above the background expectation is found and an observed (expected) limit of 3.4 (2.2) times the Standard Model cross section is obtained at 95% confidence level. The ratio of the measured tt¯H signal cross section to the Standard Model expectation is found to be μ=1.5±1.1 assuming a Higgs boson mass of 125 GeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The associated production of a Higgs boson and a top-quark pair, tt¯H, in proton-proton collisions is addressed in this paper for a center of mass energy of 13TeV at the LHC. Dileptonic final states of tt¯H events with two oppositely charged leptons and four jets from the decays t→bW+→bℓ+νℓ, t¯→b¯W−→b¯ℓ−ν¯ℓ and h→bb¯, are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. New angular distributions of the decay products as well as angular asymmetries are explored in order to improve discrimination of tt¯H signal events over the dominant irreducible background contribution, tt¯bb¯. Even after the full kinematic fit reconstruction of the events, the proposed angular distributions and asymmetries are still quite different in the tt¯H signal and the dominant background (tt¯bb¯).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The receiver-operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1-specificity) for different cut-off values used to classify an individual as healthy or diseased. In time-to-event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time-dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time-dependent disease outcomes, time-dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time-dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right-censored data, as well as covariate-dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Optometria Avançada