5 resultados para high volume peritoneal dialysis
em Universidade do Minho
Resumo:
The eco-efficient, self-compacting concrete (SCC) production, containing low levels of cement in its formulation, shall contribute for the constructions' sustainability due to the decrease in Portland cement use, to the use of industrial residue, for beyond the minimization of the energy needed for its placement and compaction. In this context, the present paper intends to assess the viability of SCC production with low cement levels by determining the fresh and hardened properties of concrete containing high levels of fly ash (FA) and also metakaolin (MK). Hence, 6 different concrete formulations were produced and tested: two reference concretes made with 300 and 500 kg/m3 of cement; the others were produced in order to evaluate the effects of high replacement levels of cement. Cement replacement by FA of 60% and by 50% of FA plus 20% of MK were tested and the addition of hydrated lime in these two types of concrete were also studied. To evaluate the self-compacting ability slump flow test, T500, J-ring, V-funnel and L-box were performed. In the hardened state the compressive strength at 3, 7, 14, 21, 28 and 90 days of age was determined. The results showed that it is possible to produce low cement content SCC by replacing high levels of cement by mineral additions, meeting the rheological requirements for self-compacting, with moderate resistances from 25 to 30 MPa after 28 days.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
Dissertação de mestrado em Engenharia Industrial (área de especialização em Qualidade, Segurança e Manutenção)
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
This work describes the influence of a high annealing temperature of about 700C on the Si(substrate)/Si3N4/TiOx/Pt/LiCoO2 multilayer system for the fabrication of all-solid-state lithium ion thin film microbatteries. Such microbatteries typically utilize lithium cobalt oxide (LiCoO2) as cathode material with a platinum (Pt) current collector. Silicon nitride (Si3N4) is used to act as a barrier against Li diffusion into the substrate. For a good adherence between Si3N4 and Pt, commonly titanium (Ti) is used as intermediate layer. However, to achieve crystalline LiCoO2 the multilayer system has to be annealed at high temperature. This post-treatment initiates Ti diffusion into the Pt-collector and an oxidation to TiOx, leading to volume expansion and adhesion failures. To solve this adhesion problem, we introduce titanium oxide (TiOx) as an adhesion layer, avoiding the diffusion during the annealing process. LiCoO2, Pt and Si3N4 layers were deposited by magnetron sputtering and the TiOx layer by thermal oxidation of Ti layers deposited by e-beam technique. Asdeposited and annealed multilayer systems using various TiOx layer thicknesses were studied by scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The results revealed that an annealing process at temperature of 700C leads to different interactions of Ti atoms between the layers, for various TiOx layer thicknesses (25–45 nm).