8 resultados para grounding line
em Universidade do Minho
Resumo:
As increasingly more sophisticated materials and products are being developed and times-to-market need to be minimized, it is important to make available fast response characterization tools using small amounts of sample, capable of conveying data on the relationships between rheological response, process-induced material structure and product characteristics. For this purpose, a single / twin-screw mini-extrusion system of modular construction, with well-controlled outputs in the range 30-300 g/h, was coupled to a in- house developed rheo-optical slit die able to measure shear viscosity and normal-stress differences, as well as performing rheo-optical experiments, namely small angle light scattering (SALS) and polarized optical microscopy (POM). In addition, the mini-extruder is equipped with ports that allow sample collection, and the extrudate can be further processed into products to be tested later. Here, we present the concept and experimental set-up [1, 2]. As a typical application, we report on the characterization of the processing of a polymer blend and of the properties of extruded sheets. The morphological evolution of a PS/PMMA industrial blend along the extruder, the flow-induced structures developed and the corresponding rheological characteristics are presented, together with the mechanical and structural characteristics of produced sheets. The application of this experimental tool to other material systems will also be discussed.
Resumo:
Companies from the motorcycles components branch are dealing with a dynamic environment, resulting from the introduction of new products and the increase of market demand. This dynamic environment requires frequent changes in production lines and requires flexibility in the processes, which can cause reductions in the level of quality and productivity. This paper presents a Lean Six Sigma improvement project performed in a production line of the company's machining sector, in order to eliminate losses that cause low productivity, affecting the fulfillment of the production plan and customer satisfaction. The use of Lean methodology following the DMAIC stages allowed analyzing the factors that influence the line productivity loss. The major problems and causes that contribute to a reduction on productivity and that were identified in this study are the lack of standardization in the setup activities and the excessive stoppages for adjustment of the processes that caused an increase of defects. Control charts, Pareto analysis and cause-and-effect diagrams were used to analyze the problem. On the improvement stage, the changes were based on the reconfiguration of the line layout as well as the modernization of the process. Overall, the project justified an investment in new equipment, the defective product units were reduced by 84% and an increase of 29% of line capacity was noticed.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada – Biomedicina
Resumo:
Dissertação de mestrado em Design de Comunicação de Moda
Resumo:
Programa Doutoral em Líderes para as Indústrias Tecnológicas
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Relatório de estágio de mestrado em Tradução e Comunicação Multilingue