6 resultados para finite and infinitesimal models
em Universidade do Minho
Resumo:
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Resumo:
The structural analysis involves the definition of the model and selection of the analysis type. The model should represent the stiffness, the mass and the loads of the structure. The structures can be represented using simplified models, such as the lumped mass models, and advanced models resorting the Finite Element Method (FEM) and Discrete Element Method (DEM). Depending on the characteristics of the structure, different types of analysis can be used such as limit analysis, linear and non-linear static analysis and linear and non-linear dynamic analysis. Unreinforced masonry structures present low tensile strength and the linear analyses seem to not be adequate for assessing their structural behaviour. On the other hand, the static and dynamic non-linear analyses are complex, since they involve large time computational requirements and advanced knowledge of the practitioner. The non-linear analysis requires advanced knowledge on the material properties, analysis tools and interpretation of results. The limit analysis with macro-blocks can be assumed as a more practical method in the estimation of maximum load capacity of structure. Furthermore, the limit analysis require a reduced number of parameters, which is an advantage for the assessment of ancient and historical masonry structures, due to the difficult in obtaining reliable data.
Resumo:
In several industrial applications, highly complex behaviour materials are used together with intricate mixing processes, which difficult the achievement of the desired properties for the produced materials. This is the case of the well-known dispersion of nano-sized fillers in a melt polymer matrix, used to improve the nanocomposite mechanical and/or electrical properties. This mixing is usually performed in twin-screw extruders, that promote complex flow patterns, and, since an in loco analysis of the material evolution and mixing is difficult to perform, numerical tools can be very useful to predict the evolution and behaviour of the material. This work presents a numerical based study to improve the understanding of mixing processes. Initial numerical studies were performed with generalized Newtonian fluids, but, due to the null relaxation time that characterize this type of fluids, the assumption of viscoelastic behavior was required. Therefore, the polymer melt was rheologically characterized, and, a six mode Phan-Thien-Tanner and Giesekus models were used to fit the rheological data. These viscoelastic rheological models were used to model the process. The conclusions obtained in this work provide additional and useful data to correlate the type and intensity of the deformation history promoted to the polymer nanocomposite and the quality of the mixing obtained.
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Tese de Doutoramento em Ciências da Saúde