50 resultados para development of processes

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes. Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetoelectric microspheres based on piezoelectric poly(vinylidene fluoride) (PVDF) and magnetrostrictive CoFe2O4 (CFO), a novel morphology for polymer-based ME material, have been developed by an electrospray process. The CFO nanoparticles content in the (3-7 μm diameter) microspheres reaches values up to 27 wt.%, despite their concentration in the starting solution reaching values up to 70 wt.%. Additionally, the inclusion of magnetostrictive nanoparticles into the polymer spheres has no relevant effect on the piezoelectric β-phase content (≈60%), crystallinity (40%) and the onset degradation temperature (460º-465ºC) of the polymer matrix. The multiferroic microspeheres show a maximum piezoelectric reponse |d33|≈30 pC.N-1, leading to a magnetoelectric response of Δ|d33|≈5 pC.N-1 obtained when a 220 mT DC magnetic field was applied. It is also shown that the interface between CFO nanoparticles and PVDF (from 0 to 55%) has a strong influence on the ME response of the microspheres. The simplicity and the scalability of the processing method suggest a large application potential of this novel magnetoelectric geometry in areas such as tissue engineering, sensors and actuators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doctoral Dissertation for PhD degree in Chemical and Biological Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PhD in Chemical and Biological Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Musculoskeletal diseases are one of the leading causes of disability worldwide. Tendon injuries are responsible for substantial morbidity, pain and disability. Tissue engineering strategies aim at translating tendon structure into biomimetic materials. The main goal of the present study is to develop microengineered hydrogel fibers through the combination of microfabrication and chemical interactions between oppositely charged polyelectrolytes. For this, methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (MeCS) were combined with chitosan (CHT). Hydrogel fibers were obtained by injecting polymer solutions (either MeHA or MeHA/MeCS and CHT) in separate microchannels that join at a y-junction, with the materials interacting upon contact at the interface. To evaluate cell behavior, human tendon derived cells (hTDCs) were isolated from tendon surplus samples during orthopedic surgeries and seeded on top of the fibers. hTDCs adhered to the surface of the fibers, remaining viable, and were found to be expressing CD44, the receptor for hyaluronic acid. The synthesis of hydrogel fibers crosslinkable through both physical and chemical mechanisms combined with microfabrication technology allows the development of biomimetic structures with parallel fibers being formed towards the replication of tendon tissue architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tendon's regeneration is limited, demanding for cell-based strategies to fully restore their functionality upon injury. The concept of magnetic force-based TE(1), generally using magnetic nanoparticles may enable, for example, stem cell stimulation and/or remote control over TE constructs. Thus, we originally propose the development of magnetic cell sheets (magCSs) with tenogenic capability, aimed at promoting tendon's regeneration. A Tenomodulin (TNMD+) subpopulation was sorted from human adipose stem cells (hASCs), using TNMD-coated immunomagnetic beads(2) and used as cell source for the development of magCSs. Briefly, cells were labeled with iron oxide composite particles (Micromod) and cultured for 7 days in α-MEM medium with or without magnetic stimulation provided by a magnetic device (nanoTherics). CSs were retrieved from the plates using magnet attraction as contiguous sheets of cells within its own deposited ECM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the last decade of the twentieth century, the healthcare industry is paying attention to the environmental impact of their buildings and therefore new regulations, policy goals and Buildings Sustainability Assessment (HBSA) methods are being developed and implemented. At the present, healthcare is one of the most regulated industries and it is also one of the largest consumers of energy per net floor area. To assess the sustainability of healthcare buildings it is necessary to establish a set of benchmarks related with their life-cycle performance. They are both essential to rate the sustainability of a project and to support designers and other stakeholders in the process of designing and operating a sustainable building, by allowing the comparison to be made between a project and the conventional and best market practices. This research is focused on the methodology to set the benchmarks for resources consumption, waste production, operation costs and potential environmental impacts related to the operational phase of healthcare buildings. It aims at contributing to the reduction of the subjectivity found in the definition of the benchmarks used in Building Sustainability Assessment (BSA) methods, and it is applied in the Portuguese context. These benchmarks will be used in the development of a Portuguese HBSA method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that the future of the construction sector in most European countries will mainly lie in the renovation of the existing building stock, in the next coming years thousands of energy inefficient buildings will need renovation to force EU member states to reach the EU 2020 targets and implement the Energy Performance of Buildings Directive (EPBD). Seeing the actual crisis in the construction sector as an opportunity, this work aims to develop a concept for prefabricated customizable sandwich panels for the multifunctional renovation of buildings, focusing also on technological innovation. More than a conventional solution, this proposal aims to combine sustainable and recycled building materials, available technologies and systems with advanced design and manufacturing tools within an integrated and mass-customizable approach of advanced building renovation prefabricated solutions. The adoption of these new proposed solutions would improve the living standards of the inhabitants of our cities, reducing energy inefficiency and other existing construction/renovation problems, while enabling some advanced features like the incorporation of technical modules that could even monitor the building performance during its full lifetime and the living conditions of its occupants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a work performed in the maintenance department of a furniture company in Portugal, in order to develop and implement autonomous maintenance. The main objective of the project was related to the objective to increase and make effective the autonomous maintenance tasks performed by production operators, and in this way avoiding unplanned downtime due to equipment failures. Although some autonomous maintenance tasks were already carried out within the company, a preliminary study revealed weaknesses in the application of this tool. In the initial phase of this pilot project, the main problems encountered at the level of autonomous maintenance were related to the lack of time to carry out these tasks, showing that the stipulated procedures were far from the real needs of the company. To solve these problems a pilot project was conducted, making several changes in the performance of autonomous maintenance tasks, making them standard and adapted to reality of each production line. There was a general improvement in the factory indicators, and essentially there was a behavioral change, since the operators felt that their opinions were taking into account and began to understand the importance of small tasks performed by them.