8 resultados para Tecnologia padrão
em Universidade do Minho
Resumo:
O desenvolvimento profissional dos professores de matemática, por meio de progra¬mas nacionais e formações contínuas, deve proporcionar experiências que envolvam investigação, pensamento, planeamento, prática e reflexão. No caso da tecnologia, não nos devemos focar nas ferramentas em si, mas no modo como são usadas pelos docentes em contexto de sala de aula. Existem taxonomias de atividades de apren¬dizagem baseadas no conteúdo assentes na ideia do professor como construtor do currículo, que, para integrar com sucesso a tecnologia educativa nas aulas, desenvolve o conhecimento pedagógico e tecnológico do conteúdo (TPACK), e apresenta-se a de matemática. Desse modo, reflete-se, por meio de vários estudos nacionais e internacionais, que as tecnologias deverão ser usadas pelos professores de acordo com objetivos, conteúdos e pedagogias específicas para terem um efeito positivo na aprendizagem dos alunos sobre as atividades baseadas no conteúdo que melhor se enquadram com essas tecnologias.
Resumo:
(Excerto) Com a expansão das novas tecnologias digitais da informação e da comunicação e as biotecnologias, o mundo social e técnico está a transformar-se de uma forma acelerada nas últimas décadas. Uma alteração que tem dois efeitos importantes: em primeiro lugar, uma mudança na relação entre o humano e a tecnologia; em segundo, uma crise da forma tradicional das ciências sociais pensarem a questão da técnica.
Resumo:
Dissertação de mestrado em Plant Molecular Biology, Biotechnology and Bioentrepeneurship
Resumo:
Tese de Doutoramento em Biologia de Plantas.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.
Resumo:
Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapour permeability (WVP), mechanical properties, and bactericidal efficiency against two food pathogens, Escherichia coli and Staphylococcus aureus. Considering their edibility, an in vitro gastrointestinal tract model was used to study the changes occurring in the BC films during passage through the gastrointestinal tract. Moreover, the cytotoxicity of the BC films against 3T3 mouse embryo fibroblasts was evaluated. BC1 and BC2 showed equivalent density, WVP and maximum tensile strength. The percentage of bactericidal efficiency of BC1 and BC2 with adsorbed bLF (BC1+bLF and BC2+bLF, respectively) in the standalone films and in inoculated fresh sausages, was similar against E. coli (mean reduction 69 % in the films per se versus 94 % in the sausages) and S. aureus (mean reduction 97 % in the films per se versus 36 % in the case sausages). Moreover, the BC1+bLF and BC2+bLF films significantly hindered the specific growth rate of both bacteria. Finally, no relevant cytotoxicity against 3T3 fibroblasts was found for the films before and after the simulated digestion. BC films with adsorbed bLF may constitute an approach in the development of bio-based edible antimicrobial packaging systems.
Resumo:
Relatório de estágio de mestrado em Ensino de Filosofia no Ensino Secundário