15 resultados para Spherical astronomy
em Universidade do Minho
Resumo:
We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.
Superhydrophobic surfaces as a tool for the fabrication of hierarchical spherical polymeric carriers
Resumo:
Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes.
Resumo:
Purpose. The purpose of this work was to evaluate the potential of a novel custom-designed rigid gas permeable (RGP) contact lens to modify the relative peripheral refractive error in a sample of myopic patients. Methods. Fifty-two right eyes of 52 myopic patients (mean [TSD] age, 21 [T2] years) with spherical refractive errors ranging from j0.75 to j8.00 diopters (D) and refractive astigmatism of 1.00 D or less were fitted with a novel experimental RGP (ExpRGP) lens designed to create myopic defocus in the peripheral retina. A standard RGP (StdRGP) lens was used as a control in the same eye. The relative peripheral refractive error was measured without the lens and with each of two lenses (StdRGP and ExpRGP) using an open-field autorefractometer from 30 degrees nasal to 30 degrees temporal, in 5-degree steps. The effectiveness of the lens design was evaluated as the amount of relative peripheral refractive error difference induced by the ExpRGP compared with no lens and with StdRGP conditions at 30 degrees in the nasal and temporal (averaged) peripheral visual fields. Results. Experimental RGP lens induced a significant change in relative peripheral refractive error compared with the nolens condition (baseline), beyond the 10 degrees of eccentricity to the nasal and temporal side of the visual field (p G 0.05). The maximum effect was achieved at 30 degrees. Wearing the ExpRGP lens, 60% of the eyes had peripheral myopia exceeding j1.00 D, whereas none of the eyes presented with this feature at baseline. There was no significant correlation (r = 0.04; p = 0.756) between the degree of myopia induced at 30 degrees of eccentricity of the visual field with the ExpRGP lens and the baseline refractive error. Conclusions. Custom-designed RGP contact lenses can generate a significant degree of relative peripheral myopia in myopic patients regardless of their baselin spherical equivalent refractive error.
Resumo:
Purpose: The purpose of this study was to evaluate the effect of orthokeratology for different degrees of myopia correction in the relative location of tangential (FT) and sagittal (FS) power errors across the central 70 of the visual field in the horizontal meridian. Methods: Thirty-four right eyes of 34 patients with a mean age of 25.2 ± 6.4 years were fitted with Paragon CRT (Mesa, AZ) rigid gas permeable contact lenses to treat myopia (2.15 ± 1.26D, range: 0.88 to 5.25D). Axial and peripheral refraction were measured along the central 70 of the horizontal visual field with the Grand Seiko WAM5500 open-field auto-refractor. Spherical equivalent (M), as well as tangential (FT) and sagittal power errors (FS) were obtained. Analysis was stratified in three groups according to baseline spherical equivalent: Group 1 [MBaseline = 0.88 to 1.50D; n = 11], Group 2 [MBaseline = 1.51 to 2.49D; n = 11], and Group 3 [MBaseline = 2.50 to 5.25D; n = 12]. Results: Spherical equivalent was significantly more myopic after treatment beyond the central 40 of the visual field (p50.001). FT became significantly more myopic for all groups in the nasal and temporal retina with 25 (p 0.017), 30 (p 0.007) and 35 (p 0.004) of eye rotation. Myopic change in FS was less consistent, achieving only statistical significance for all groups at 35 in the nasal and temporal retina (p 0.045). Conclusions: Orthokeratology changes significantly FT in the myopic direction beyond the central 40 of the visual field for all degrees of myopia. Changes induced by orthokeratology in relative peripheral M, FT and FS with 35 of eye rotation were significantly correlated with axial myopia at baseline. Keywords: Field
Resumo:
Dissertação de mestrado em Optometria Avançada
Resumo:
We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.
Resumo:
Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.
Resumo:
A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the â stem cell nicheâ , the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.
Resumo:
The stem cell niche organization and dynamics provide valuable cues for the development of mimetic environments that could have potential to stimulate the regenerative process. We propose the use of biodegradable biomaterials to produce closed miniaturised structures able to encapsulate different cell types or bioactive molecules. In particular, capsules are fabricated using the so-called layer-by-layer technology, where the consecutive (nano-sized) layers are well stabilized by electrostatic interactions or other weak forces. Using alginate-based spherical templates containing cells or other elements (e.g. proteins, magnetic nanoparticles, microparticles) it is possible to produce liquefied capsules that may entrap the entire cargo under mild conditions. The inclusion of liquefied micropcapsules may be used to produce hierarchical compartmentalised systems for the delivery of bioactive agents. The presence of solid microparticles inside such capsules offers adequate surface area for adherent cell attachment increasing the biological performance of these hierarchical systems, while maintain both permeability and injectability. We demonstrated that the encapsulation of distinct cell types (including mesenchymal stem cells and endothelial cells) enhances the osteogenic capability of this system, that could be useful in bone tissue engineering applications.
Resumo:
B-Lactoglobulin (b-Lg) is the major protein fraction of bovine whey serum and a primary gelling agent. b-Lg has a high nutritional value, is stable at low pH being highly resistant to proteolytic degradation in the stomach, besides, it has the ability of acting as an encapsulating agent. This study aims at assessing the ability of b-Lg nanostructures to associate a nutraceutical - i.e. riboflavin - and release it in a controlled manner throughout an in vitro gastrointestinal (GI) system. For this reason b-Lg nanostructures loaded with riboflavin were critically characterized in terms of their morphology (i.e. size, polydispersity, -potential and shape) by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and efficiency to associate to riboflavin through spectrofluorimetry. Furthermore, these nanocomplexes were evaluated in an in vitro GI model, simulating the physiological conditions. Stable b-Lg nanostructures were obtained at pH 6, of spherical shape, characterized by particle size of 172±1 nm, low polydispersity (i.e. PDI of 0.06±0.02), -potential of -32±3 mV and association efficiency (AE) of 26±1 %. b-Lg nanostructures showed to be stable upon their passage throughout stomach (i.e. particle size, PDI and potential of 248±10 nm, 0.18±0.03 and 18±3 mV, respectively). Concerning their passage throughout the intestine, such nanostructures were mostly degraded in the duodenum. Regarding riboflavin, a release of about 11 % was observed after their passage through stomach, while 35 %, 38 % and 5 % were the released percentages of the total riboflavin associated observed after passage through duodenum, jejunum and ileum, respectively. Hence,b-Lg nanostructures showed to be suitable carriers for riboflavin until the intestine, where their degradation occurs. b-Lg also showed to be structurally stable, under food simulant conditions (yoghurt simulant, composed of 3 % acetic acid), over 14 days, with a protective effect upon riboflavin activity, releasing it in a 7 day period.
Resumo:
Curcumin and caffeine (used as lipophilic and hydrophilic model compounds, respectively) were successfully encapsulated in lactoferrin-glycomacropeptide (Lf-GMP) nanohydrogels by thermal gelation showing high encapsulation efficiencies (>90 %). FTIR spectroscopy confirmed the encapsulation of bioactive compounds in Lf-GMP nanohydrogels and revealed that according to the encapsulated compound different interactions occur with the nanohydrogel matrix. The successful encapsulation of bioactive compounds in Lf-GMP nanohydrogels was also confirmed by fluorescence measurements and confocal laser scanning microscopy. TEM images showed that loaded nanohydrogels maintain their spherical shape with sizes of 112 and 126 nm for curcumin and caffeine encapsulated in Lf-GMP nanohydrogels, respectively; in both cases a polydispersity of 0.2 was obtained. The release mechanisms of bioactive compounds through Lf-GMP nanohydrogels were evaluated at pH 2 and pH 7, by fitting the Linear Superimposition Model to the experimental data. The bioactive compounds release was found to be pH-dependent: at pH 2, relaxation is the governing phenomenon for curcumin and caffeine compounds and at pH 7 Ficks diffusion is the main mechanism of caffeine release while curcumin was not released through Lf-GMP nanohydrogels.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
PhD in Chemical and Biological Engineering