21 resultados para STRUCTURE-BASED DRUG DESIGN

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Biofísica e Bionanossistemas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Purine nucleobases are fundamental biochemicals in living organisms. They have been a valuable inspiration for drug design once they play several key roles in the cell.1 To the best of our knowledge, reported routes to 8-aminopurines are still scarce due to the difficulty in introducing amino groups in this position of the purine ring. Here we report a novel, inexpensive and facile synthetic method to generate N3,N6-disubstituted-6,8-diaminopurines. In our research group, a number of substituted purines have been obtained from a common imidazole precursor, the 5-amino-4-cyanoformimidoyl imidazole 1. Recently, a comprehensive study on the reactivity of imidazoles 1 with nucleophiles under acidic conditions led us to develop experimental methods to incorporate primary amines into the cyanoformimidoyl group.2 (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Purine nucleobases are essential biomolecules in living organisms. Playing several key roles in the cell, they have been a significant inspiration for drug design.1 Benzimidazole nucleus is an important pharmacophore in the development of molecules with pharmaceutical or biological interest. Benzimidazoles have been reported to display significant pharmacological activities such as antiulcer, antifungal, antiparkinson, anticancer and antibiotic.2 Fused structures incorporating these two scaffolds might be important for medicinal chemistry and, to the best of our knowledge, there are no reports of these systems in the literature. In particular, benzo[4,5]imidazo[2,1]purines seem to be novel and must be important target molecules in the heterocyclic synthesis. (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente investigação desenvolveu uma análise profunda do setor da distribuição farmacêutica, no período compreendido entre 2000 e 2009, procurando identificar as possíveis relações de interdependência entre o meio envolvente e as opções de estratégia das empresas que constituíram a amostra de estudo e entre as referidas opções de estratégia e as estruturas e o desempenho dessas empresas. A dinâmica do mercado do medicamento na economia nacional, com um valor de 3,2 mil milhões de euros anuais (Infarmed, 2010), apresenta um impacto significativo na esperança de vida e na qualidade de vida dos cidadãos. Segundo a OCDE, os produtos farmacêuticos são responsáveis por quase um quinto de todos os gastos com saúde, em média, nos países da OCDE. Neste contexto, a distribuição farmacêutica representa uma componente crítica. A disponibilização de medicamentos em ambulatório num curto espaço de tempo só é possível devido a uma estrutura logística com características muito específicas. A qualidade do armazenamento e do transporte dos medicamentos desde a saída dos laboratórios até à chegada às farmácias é rigorosamente monitorizada e controlada. O setor da distribuição farmacêutica assume assim uma postura elementar na cadeia do medicamento, contribuindo para a melhoria da qualidade do sistema de saúde que se tem vindo a verificar nas últimas décadas e prestando um serviço com valor para a comunidade, uma vez que se compromete a assegurar um adequado e contínuo fornecimento de medicamentos para que as necessidades dos doentes e das populações em geral sejam satisfeitas. As alterações verificadas ao longo dos últimos anos estimularam a dinâmica concorrencial entre os diferentes agentes neste mercado, bastante regulamentado e com elevado entrosamento financeiro com o Estado, o que obrigou a rápidas mudanças. Neste contexto, a sobrevivência das empresas, o seu crescimento e a sua perenidade futura têm constituído um desafio abordado de forma diversa por cada empresa.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Bovine α-lactalbumin (α-La) and lysozyme (Lys), two globular proteins with highly homologous tertiary structures and opposite isoelectric points, were used to produce bio-based supramolecular structures under various pH values (3, 7 and 11), temperatures (25, 50 and 75 °C) and times (15, 25 and 35 min) of heating. Isothermal titration calorimetry experiments showed protein interactions and demonstrated that structures were obtained from the mixture of α-La/Lys in molar ratio of 0.546. Structures were characterized in terms of morphology by transmission electron microscopy (TEM) and dynamic light scattering (DLS), conformational structure by circular dichroism and intrinsic fluorescence spectroscopy and stability by DLS. Results have shown that protein conformational structure and intermolecular interactions are controlled by the physicochemical conditions applied. The increase of heating temperature led to a significant decrease in size and polydispersity (PDI) of α-La–Lys supramolecular structures, while the increase of heating time, particularly at temperatures above 50 °C, promoted a significant increase in size and PDI. At pH 7 supramolecular structures were obtained at microscale – confirmed by optical microscopy – displaying also a high PDI (i.e. > 0.4). The minimum size and PDI (61 ± 2.3 nm and 0.14 ± 0.03, respectively) were produced at pH 11 for a heating treatment of 75 °C for 15 min, thus suggesting that these conditions could be considered as critical for supramolecular structure formation. Its size and morphology were confirmed by TEM showing a well-defined spherical form. Structures at these conditions showed to be stable at least for 30 or 90 days, when stored at 25 or 4 °C, respectively. Hence, α-La–Lys supramolecular structures showed properties that indicate that they are a promising delivery system for food and pharmaceutical applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 In orthopaedics, the management and treatment of osteochondral (OC) defects remains an ongoing clinical challenge. Autologous osteochondral mosaicplasty has been used as a valid option for OC treatments although donor site morbidity remains a source of concern [1]. Engineering a whole structure capable of mimicking different tissues (cartilage and subchondral bone) in an integrated manner could be a possible approach to regenerate OC defects. In our group we have been proposing the use of bilayered structures to regenerate osteochondral defects [2,3]. The present study aims to investigate the pre-clinical performance of bilayered hydrogels and spongy-like hydrogels in in vivo  models (mice and rabbit, respectively), in both subcutaneous and orthotopic models. The bilayered structures were produced from Low Acyl Gellan Gum (LAGG) from Sigma-Aldrich, USA. Cartilage-like layers were obtained from a 2wt% LAGG solution. The bone-like layers were made of 2wt% LAGG with incorporation of hydroxyapatite at 20% and 30% (w/v). Hydrogels and spongy-like were subcutaneouly implanted in mice to evaluate the inflammatory response. Then, OC defects were induced in rabbit knee to create a critical size defect (4 mm diameter and 5 mm depth), and then hydrogels and sponges implanted. Both structures followed different processing methods. The hydrogels were injected allowing in situ  crosslinking. Unlike, the spongy-like were pre-formed by freeze-drying. The studies concerning subcutaneous implantation and critical size OC defect were performed for 2 and 4 weeks time, respectively. Cellular behavior and inflammatory responses were assessed by means of histology staining and biochemical function and matrix deposition by immunohistochemistry. Additionally, both OC structures stability and new cartilage and bone formation were evaluated by using vivo- computed tomography (Scanco 80). The results showed no acute inflammatory response for both approaches. New tissue formation and integration in the adjacent tissues were also observed, which present different characteristic behaviors when comparing hydrogels and sponges response. As future insights, a novel strategy for regeneration of OC defects can be designed encompassing both, hydrogels and spongy-like structures and cellular approaches. References: 1. Espregueira-Mendes J. et al. Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surgery, Sports Traumatology, Arthroscopy 20,1136, 2012. 2. Oliveira JM. et al, Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27, 6123, 2006. 3. Pereira D R. et al. Gellan Gum-Based Hydrogel Bilayered Scaffolds for Osteochondral Tissue Engineering. Key Engineering Materials 587, 255, 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A conventional method for seismic strengthening of masonry walls is externally application of reinforced concrete layer (shotcrete). However, due to the lack of analytical and experimental information on the behavior of strengthened walls, the design procedures are usually followed based on the empirical relations. Using these design procedures have resulted in massive strengthening details in retrofitting projects. This paper presents a computational framework for nonlinear analysis of strengthened masonry walls and its versatility has been verified by comparing the numerical and experimental results. Based on the developed numerical model and available experimental information, design relations and failure modes are proposed for strengthened walls in accordance with the ASCE 41 standard. Finally, a sample masonry structure has been strengthened using the proposed and available conventional methods. It has been shown that using the proposed method results in lower strengthening details and appropriate (ductile) failure modes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Information security is concerned with the protection of information, which can be stored, processed or transmitted within critical information systems of the organizations, against loss of confidentiality, integrity or availability. Protection measures to prevent these problems result through the implementation of controls at several dimensions: technical, administrative or physical. A vital objective for military organizations is to ensure superiority in contexts of information warfare and competitive intelligence. Therefore, the problem of information security in military organizations has been a topic of intensive work at both national and transnational levels, and extensive conceptual and standardization work is being produced. A current effort is therefore to develop automated decision support systems to assist military decision makers, at different levels in the command chain, to provide suitable control measures that can effectively deal with potential attacks and, at the same time, prevent, detect and contain vulnerabilities targeted at their information systems. The concept and processes of the Case-Based Reasoning (CBR) methodology outstandingly resembles classical military processes and doctrine, in particular the analysis of “lessons learned” and definition of “modes of action”. Therefore, the present paper addresses the modeling and design of a CBR system with two key objectives: to support an effective response in context of information security for military organizations; to allow for scenario planning and analysis for training and auditing processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PhD Thesis in Sciences Specialization in Chemistry

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese de Doutoramento Engenharia Têxtil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.