26 resultados para Real data

em Universidade do Minho


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Worldwide, around 9% of the children are born with less than 37 weeks of labour, causing risk to the premature child, whom it is not prepared to develop a number of basic functions that begin soon after the birth. In order to ensure that those risk pregnancies are being properly monitored by the obstetricians in time to avoid those problems, Data Mining (DM) models were induced in this study to predict preterm births in a real environment using data from 3376 patients (women) admitted in the maternal and perinatal care unit of Centro Hospitalar of Oporto. A sensitive metric to predict preterm deliveries was developed, assisting physicians in the decision-making process regarding the patients’ observation. It was possible to obtain promising results, achieving sensitivity and specificity values of 96% and 98%, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Maternity Care, a quick decision has to be made about the most suitable delivery type for the current patient. Guidelines are followed by physicians to support that decision; however, those practice recommendations are limited and underused. In the last years, caesarean delivery has been pursued in over 28% of pregnancies, and other operative techniques regarding specific problems have also been excessively employed. This study identifies obstetric and pregnancy factors that can be used to predict the most appropriate delivery technique, through the induction of data mining models using real data gathered in the perinatal and maternal care unit of Centro Hospitalar of Oporto (CHP). Predicting the type of birth envisions high-quality services, increased safety and effectiveness of specific practices to help guide maternity care decisions and facilitate optimal outcomes in mother and child. In this work was possible to acquire good results, achieving sensitivity and specificity values of 90.11% and 80.05%, respectively, providing the CHP with a model capable of correctly identify caesarean sections and vaginal deliveries.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Healthcare organizations often benefit from information technologies as well as embedded decision support systems, which improve the quality of services and help preventing complications and adverse events. In Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is implemented, aiming to prioritize patients in need of gynaecology and obstetrics care in two classes: urgent and consultation. The system is designed to evade emergency problems such as incorrect triage outcomes and extensive triage waiting times. The current study intends to improve the triage system, and therefore, optimize the patient workflow through the emergency room, by predicting the triage waiting time comprised between the patient triage and their medical admission. For this purpose, data mining (DM) techniques are induced in selected information provided by the information technologies implemented in CMIN. The DM models achieved accuracy values of approximately 94% with a five range target distribution, which not only allow obtaining confident prediction models, but also identify the variables that stand as direct inducers to the triage waiting times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the paper. The authors would like to thank Dr. Elaine DeBock for reviewing the manuscript.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, organizations are increasingly looking to invest in business intelligence solutions, mainly private companies in order to get advantage over its competitors, however they do not know what is necessary. Business intelligence allows an analysis of consolidated information in order to obtain more specific outlets and certain indications in order to support the decision making process. You can take the right decision based on the data collected from different information systems present in the organization and outside of them. The textile sector is a sector where concept of Business Intelligence it is not many explored yet. Actually there are few textile companies that have a BI platform. Thus, the article objective is present an architecture and show all the steps by which companies need to spend to implement a successful free homemade Business Intelligence system. As result the proposed approach it was validated using real data aiming assess the steps defined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a pregnant woman is guided to a hospital for obstetrics purposes, many outcomes are possible, depending on her current conditions. An improved understanding of these conditions could provide a more direct medical approach by categorizing the different types of patients, enabling a faster response to risk situations, and therefore increasing the quality of services. In this case study, the characteristics of the patients admitted in the maternity care unit of Centro Hospitalar of Porto are acknowledged, allowing categorizing the patient women through clustering techniques. The main goal is to predict the patients’ route through the maternity care, adapting the services according to their conditions, providing the best clinical decisions and a cost-effective treatment to patients. The models developed presented very interesting results, being the best clustering evaluation index: 0.65. The evaluation of the clustering algorithms proved the viability of using clustering based data mining models to characterize pregnant patients, identifying which conditions can be used as an alert to prevent the occurrence of medical complications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado Engenharia e Gestão da Qualidade

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado em Estatística

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical Ventilation is an artificial way to help a Patient to breathe. This procedure is used to support patients with respiratory diseases however in many cases it can provoke lung damages, Acute Respiratory Diseases or organ failure. With the goal to early detect possible patient breath problems a set of limit values was defined to some variables monitored by the ventilator (Average Ventilation Pressure, Compliance Dynamic, Flow, Peak, Plateau and Support Pressure, Positive end-expiratory pressure, Respiratory Rate) in order to create critical events. A critical event is verified when a patient has a value higher or lower than the normal range defined for a certain period of time. The values were defined after elaborate a literature review and meeting with physicians specialized in the area. This work uses data streaming and intelligent agents to process the values collected in real-time and classify them as critical or not. Real data provided by an Intensive Care Unit were used to design and test the solution. In this study it was possible to understand the importance of introduce critical events for Mechanically Ventilated Patients. In some cases a value is considered critical (can trigger an alarm) however it is a single event (instantaneous) and it has not a clinical significance for the patient. The introduction of critical events which crosses a range of values and a pre-defined duration contributes to improve the decision-making process by decreasing the number of false positives and having a better comprehension of the patient condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.