42 resultados para Potential antichagasic agents

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Purines, such as adenine, are one of the most important naturally occurring nitrogen heterocycles and they are frequently used as bioactive agents.[1,2] The increasing number of synthetic purines reveals the great potential of these compounds as enzyme inhibitors. Protein Kinases have an important regulatory role in cell proliferation, differentiation and signalling processes. Abnormal signal transduction is responsible for devastating diseases such as cancer. All of the protein kinases identified have in common the cofactor ATP indicating that the adenine nucleus is a very important scaffold for discovery of new anti-cancer agents.[3,4] Previous work identified a modest anticancer activity in a family of 6-arylaminopurines. In the view of these results, it seemed reasonable to assume that some interesting anticancer agents might result by replacement of the phenyl group by a secondary amino group linked to the N-6 atom of the adenine moiety. (...)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Intervenção Precoce)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials mitigates heat loss in buildings, therefore minimising heat energy needs. In recent years, several papers were published on the subject of foam alkali-activated cements with enhanced thermal conductivity. However, on those papers cost analysis was strangely avoided. This paper presents experimental results on one-part alkali-activated cements. It also includes global warming potential assessment and cost analysis. Foam one-part alkali-activated cements cost simulations considering two carbon dioxide social costs scenarios are also included. The results show that one-part alkali-activated cements mixtures based on 26%OPC + 58.3%FA + 8%CS + 7.7%CH and 3.5% hydrogen peroxide constitute a promising cost-efficient (67 euro/m3), thermal insulation solution for floor heating systems. This mixture presents a low global warming potential of 443 KgCO2eq/m3. The results confirm that in both carbon dioxide social cost scenarios the mixture 26 OPC + 58.3 FA + 8 CS + 7.7 CH with 3.5% hydrogen peroxide foaming agent is still the most cost efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents. In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the biggest concerns in the Tissue Engineering field is the correct vascularization of engineered constructs. Strategies involving the use of endothelial cells are promising but adequate cell sourcing and neo-vessels stability are enduring challenges. In this work, we propose the hypoxic pre-conditioning of the stromal vascular fraction (SVF) of human adipose tissue to obtain highly angiogenic cell sheets (CS). For that, SVF was isolated after enzymatic dissociation of adipose tissue and cultured until CS formation in normoxic (pO2=21%) and hypoxic (pO2=5%) conditions for 5 and 8 days, in basal medium. Immunocytochemistry against CD31 and CD146 revealed the presence of highly branched capillary-like structures, which were far more complex for hypoxia. ELISA quantification showed increased VEGF and TIMP-1 secretion in hypoxia for 8 days of culture. In a Matrigel assay, the formation of capillary-like structures by endothelial cells was more prominent when cultured in conditioned medium recovered from the cultures in hypoxia. The same conditioned medium increased the migration of adipose stromal cells in a scratch assay, when compared with the medium from normoxia. Histological analysis after implantation of 8 days normoxic- and hypoxic-conditioned SVF CS in a hindlimb ischemia murine model showed improved formation of neo-blood vessels. Furthermore, Laser Doppler results demonstrated that the blood perfusion of the injured limb after 30 days was enhanced for the hypoxic CS group. Overall, these results suggest that SVF CS created under hypoxia can be used as functional vascularization units for tissue engineering and regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioactive glasses, especially silica-based materials, are reported to pres- ent osteoconductive and osteoinductive properties, fundamental char- acteristics in bone regeneration [1,2]. Additionally, dexamethasone (Dex) is one of the bioactive agents able to induce the osteogenic differ- entiation of mesenchymal stem cells by increasing the alkaline phos- phatase activity, and the expression levels of Osteocalcin and Bone Sialoprotein [3]. Herein, we synthesised silica (SiO2) nanoparticles (that present inherent bioactivity and ability to act as a sustained drug delivery system), and coated their surface using poly-L-lysine (PLL) and hyaluronic acid (HA) using the layer-by-layer processing technique. Further on, we studied the influence of these new SiO2-polyelectrolyte coated nanoparticles as Dex sustained delivery systems. The SiO2 nanoparticles were loaded with Dex (SiO2-Dex) and coated with PLL and HA (SiO2-Dex-PLL-HA). Their Dex release profile was evaluated and a more sustained release was obtained with the SiO2-Dex-PLL-HA. All the particles were cultured with human bone marrow-derived mes- enchymal stem cells (hBMSCs) under osteogenic differentiation culture conditions. hBMSCs adhered, proliferated and differentiated towards the osteogenic lineage in the presence of SiO2 (DLS 174nm), SiO2-Dex (DLS 175nm) and SiO2-Dex-PLL-HA (DLS 679nm). The presence of these materials induced the overexpression of osteogenic transcripts, namely of Osteocalcin, Bone Sialoprotein and Runx2. Scanning Elec- tron Microscopy/Electron Dispersive Spectroscopy analysis demon- strated that hBMSCs synthesised calcium phosphates when cultured with SiO2-Dex and SiO2-Dex-PLL-HA nanoparticles. These results indi- cate the potential use of these SiO2-polyelectrolytes coated nanoparti- cles as dexamethasone delivery systems capable of promoting osteogenic differentiation of hBMSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Promoting the use of non-motorized modes of transport, such as cycling, is an important contribution to the improvement of mobility, accessibility and equity in cities. Cycling offers a fast and cheap transportation option for short distances, helping to lower pollutant emissions and contributing to a healthier way of life. In order to make the cycling mode more competitive in relation to motorized traffic, it is necessary to evaluate the potential of alternatives from the perspective of the physical effort. One way to do so consists of assessing the suitability of locations for implementing cycling infrastructures. In this work, four tools to determine the gradient along potential cycling paths are compared. Furthermore, an evaluation of the reliability of some low-cost tools to measure this parameter was conducted, by comparison with standard measurements using cartographic plans, on a field case study applied to the city of Braga, Portugal. These tools revealed a good level of accuracy for the planning stage, but proved to be less reliable for use in design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most popular approaches to path planning and control is the potential field method. This method is particularly attractive because it is suitable for on-line feedback control. In this approach the gradient of a potential field is used to generate the robot's trajectory. Thus, the path is generated by the transient solutions of a dynamical system. On the other hand, in the nonlinear attractor dynamic approach the path is generated by a sequence of attractor solutions. This way the transient solutions of the potential field method are replaced by a sequence of attractor solutions (i.e., asymptotically stable states) of a dynamical system. We discuss at a theoretical level some of the main differences of these two approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceans have shown tremendous importance and impact on our lives. Thus the need for monitoring and protecting the oceans has grown exponentially in recent years. On the other hand, oceans have economical and industrial potential in areas such as pharmaceutical, oil, minerals and biodiversity. This demand is increasing and the need for high data rate and near real-time communications between submerged agents became of paramount importance. Among the needs for underwater communications, streaming video (e.g. for inspecting risers or hydrothermal vents) can be seen as the top challenge, which when solved will make all the other applications possible. Presently, the only reliable approach for underwater video streaming relies on wired connections or tethers (e.g. from ROVs to the surface) which presents severe operational constraints that makes acoustic links together with AUVs and sensor networks strongly appealing. Using new polymer-based acoustic transducers, which in very recent works have shown to have bandwidth and power efficiency much higher than the usual ceramics, this article proposes the development of a reprogrammable acoustic modem for operating in underwater communications with video streaming capabilities. The results have shown a maximum data-rate of 1Mbps with a simple modulation scheme such as OOK, at a distance of 20 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Administração

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which are very similar in qualities to the jute textile fiber. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the planet. The stems of these species were retted in water at 37oC for 20 days. The fibers were tested in order to determine tensile rupture strength, tenacity, elongation, Young’s modulus, cross microscopic structure, Scanning Electronic Microscopy (SEM), regain, combustion, acid, alkali, organic solvent and cellulase effects, pH of the aqueous extract, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained values were compared with those from fibers of recognized applicability in the textile industry including hemp. The results are promising in terms of their employment in thermoset and thermoplastic medium resistance composites.