6 resultados para PLASMA BIOCHEMICAL ANALYSIS
em Universidade do Minho
Resumo:
Dissertação de mestrado em Biologia Molecular, Biotecnologia e Bioempreendedorismo em Plantas
Resumo:
A precise estimation of the postmortem interval (PMI) is one of the most important topics in forensic pathology. However, the PMI estimation is based mainly on the visual observation of cadaverous pheno- mena (e.g. algor, livor and rigor mortis) and on alternative methods such as thanatochemistry that remain relatively imprecise. The aim of this in vitro study was to evaluate the kinetic alterations of several bio- chemical parameters (i.e. proteins, enzymes, substrates, electrolytes and lipids) during putrefaction of human blood. For this purpose, we performed kinetic biochemical analysis during a 264 hour period. The results showed a significant linear correlation between total and direct bilirubin, urea, uric acid, transferrin, immunoglobulin M (IgM), creatine kinase (CK), aspartate transaminase (AST), calcium and iron with the time of blood putrefaction. These parameters allowed us to develop two mathematical models that may have predictive values and become important complementary tools of traditional methods to achieve a more accurate PMI estimation
Resumo:
This paper reports the first attempt of characterizing various physical, mechanical and chemical properties of Quiscal fibres, used by the native communities in Chile and investigating the influence of atmospheric dielectric barrier discharge plasma treatment on various properties such as diameter and linear density, fat, wax and impurity%, moisture regain, chemical elements and groups, thermal degradation, surface morphology, etc. According to the experimental observations, Quiscal fibre has lower tenacity than most of the technical grade natural fibres such as sisal, hemp, flax, etc., and plasma treatment at optimum dose improved its tenacity to the level of sisal fibres. Plasma treatment also reduced the amount of fat, wax and other foreign impurities present in Quiscal fibres as well as removed lignin and hemicellulose partially from the fibre structure. Plasma treatment led to functionalization of Quiscal fibre surface with chemical groups, as revealed from attenuated total reflection spectroscopy and also confirmed from the elemental analysis using energy dispersive Xray technique and pH and conductivity measurements of fibre aqueous extract. The wetting behavior of Quiscal fibre also improved considerably through plasma treatment. However, untreated and plasma treated Quiscal fibres showed similar thermal degradation behavior, except the final degradation stage, in which plasma treated fibres showed higher stability and incomplete degradation unlike the untreated fibres. The experimental results suggested that the plasma treated Quiscal fibres, like other technical grade natural fibres, can find potential application as reinforcement of composite materials for various industrial applications.
Resumo:
Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
Tese de Doutoramento Engenharia Têxtil