3 resultados para OMEGA
em Universidade do Minho
Resumo:
We theoretically investigate light propagation and Anderson localization in one-dimensional disordered superlattices composed of dielectric stacks with graphene sheets in between. Disorder is introduced either on graphene material parameters ({\it e.g.} Fermi energy) or on the widths of the dielectric stacks. We derive an analytic expression for the localization length $\xi$, and compare it to numerical simulations using transfer matrix technique; a very good agreement is found. We demonstrate that the presence of graphene may strongly attenuate the anomalously delocalised Breswter modes, and is at the origin of a periodic dependence of $\xi$ on frequency, in contrast to the usual asymptotic decay, $\xi \propto \omega^{-2}$. By unveiling the effects of graphene on Anderson localization of light, we pave the way for new applications of graphene-based, disordered photonic devices in the THz spectral range.
Resumo:
In this paper, we investigate the reducibility property of semidirect products of the form V *D relatively to (pointlike) systems of equations of the form x1 =...= xn, where D denotes the pseudovariety of definite semigroups. We establish a connection between pointlike reducibility of V*D and the pointlike reducibility of the pseudovariety V. In particular, for the canonical signature consisting of the multiplication and the (omega-1)-power, we show that V*D is pointlike-reducible when V is pointlike-reducible.
Resumo:
"Available online 22 March 2016"