15 resultados para Networks on chip (NoC)

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(dimethylsiloxane) (PDMS) is an organosilicon polymer widely used in the fabrication of microfluidic systems to integrate biochips. In this study, we propose the use of an adapted PDMS mould for the creation of a miniaturized, reusable, reference electrode for in-chip electrochemical measurements. Through its integrated microfluidic system it is possible to replenish internal buffer solutions, unclog critical junctions and treat the electrode’s surface, assuring a long term reuse of the same device. Planar Ag/AgCl reference electrodes were microfabricated over a passivated p-type Silicon Wafer. The PDMS mould, containing an integrated microfluidic system, was fabricated based on patterned SU-8 mould, which includes a lateral horizontal inlet access point. Surface oxidation was used for irreversible permanent bondage between flat surfaces. The final result was planar Ag/AgCl reference electrode with integrated microfluidic that allows for electrochemical analysis in biochips

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Direito e Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We explore the finish-to-start precedence relations of project activities used in scheduling problems. From these relations, we devise a method to identify groups of activities that could execute concurrently, i.e. activities in the same group can all execute in parallel. The method derives a new set of relations to describe the concurrency. Then, it is represented by an undirected graph and the maximal cliques problem identifies the groups. We provide a running example with a project from our previous studies in resource constrained project cost minimization together with an example application on the concurrency detection method: the evaluation of the resource stress.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Doctoral Programme in Telecommunication - MAP-tele

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data traces, consisting of logs about the use of mobile and wireless networks, have been used to study the statistics of encounters between mobile nodes, in an attempt to predict the performance of opportunistic networks. Understanding the role and potential of mobile devices as relaying nodes in message dissemination and delivery depends on the knowledge about patterns and number of encounters among nodes. Data traces about the use of WiFi networks are widely available and can be used to extract large datasets of encounters between nodes. However, these logs only capture indirect encounters between nodes, and the resulting encounters datasets might not realistically represent the spatial and temporal behaviour of nodes. This paper addresses the impact of overlapping between the coverage areas of different Access Points of WiFi networks in extracting encounters datasets from the usage logs. Simulation and real-world experimental results show that indirect encounter traces extracted directly from these logs strongly underestimate the opportunities for direct node-to- node message exchange in opportunistic networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver diseases have severe patients’ consequences, being one of the main causes of premature death. These facts reveal the centrality of one`s daily habits, and how important it is the early diagnosis of these kind of illnesses, not only to the patients themselves, but also to the society in general. Therefore, this work will focus on the development of a diagnosis support system to these kind of maladies, built under a formal framework based on Logic Programming, in terms of its knowledge representation and reasoning procedures, complemented with an approach to computing grounded on Artificial Neural Networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless body sensor networks (WBSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WBSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. However, one important and difficult aspect of WBSNs is to provide data transmissions with quality of service, among other factors due to the antennas being small size and placed close to the body. Such transmissions cannot be fully provided without the assumption of a MAC protocol that solves the problems of the medium sharing. A vast number of MAC protocols conceived for wireless networks are based on random or scheduled schemes. This paper studies firstly the suitability of two MAC protocols, one using CSMA and the other TDMA, to transmit directly to the base station the signals collected continuously from multiple sensor nodes placed on the human body. Tests in a real scenario show that the beaconed TDMA MAC protocol presents an average packet loss ratio lower than CSMA. However, the average packet loss ratio is above 1.0 %. To improve this performance, which is of vital importance in areas such as e-health and ambient assisted living, a hybrid TDMA/CSMA scheme is proposed and tested in a real scenario with two WBSNs and four sensor nodes per WBSN. An average packet loss ratio lower than 0.2 % was obtained with the hybrid scheme. To achieve this significant improvement, the hybrid scheme uses a lightweight algorithm to control dynamically the start of the superframes. Scalability and traffic rate variation tests show that this strategy allows approximately ten WBSNs operating simultaneously without significant performance degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Materiais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Documento submetido para revisão pelos pares. A publicar em Journal of Parallel and Distributed Computing. ISSN 0743-7315

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.