5 resultados para Mussel beds
em Universidade do Minho
Resumo:
Major advances in the development and use of antimicrobial textiles to control bacterial proliferation on wound beds continue. However, wound dressings are, in general, not included in standardized regimens for measuring and monitoring their antimicrobial effectiveness. This work adapts these methods to assess the antibacterial activity of textiles designed for wound healing purposes. Environmental conditions representative of those present at the wound site (i.e., moisture levels, infection, and available nutrients) were evaluated. This work shows that moisture levels were the environmental factor that had the greatest influence on the antimicrobial agent activities tested. These results suggest that it is possible to use the more representative environmental conditions present on the wound bed for in vitro screening of textile antimicrobial activity.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
In Portugal the use of Constructed Wetlands (CW) for wastewater treatment has been increasing. However a number of these facilities need new strategies to achieve better efficiency. Keeping the culms of reeds on the CW beds not always results as desired, but the use of widely available agro-forest wastes, may be suitable as CW support matrix. This study was performed at lab-scale with dried culms of Phragmites and eucalyptus bark maintained in tap water, to assess them as CW substrata. With a 7 days residence time in water, Phragmites culms added a high organic load (about 400 mg L-1 BOD5) to the medium, while the eucalyptus bark added only, about 60 mg L-1 BOD5. However, by lixiviation, the organic load decreased to about 25 mg L-1 BOD5 in 5 weeks. With the organic load reduction of the leachate water, its surface tension increased, approaching the surface tension of tap water.
Resumo:
Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan and hyaluronic acid modified with catechol groups, which are the main responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The build-up of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution for 7 days is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that the constructed films promote the formation of bone-like apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.
Resumo:
Dissertação de mestrado em Molecular Genetics