15 resultados para Modal matching
em Universidade do Minho
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Resumo:
Existing masonry structures are usually associated to a high seismic vulnerability, mainly due to the properties of the materials, weak connections between floors and load-bearing walls, high mass of the masonry walls and flexibility of the floors. For these reasons, the seismic performance of existing masonry structures has received much attention in the last decades. This study presents the parametric analysis taking into account the deviations on features of the gaioleiro buildings - Portuguese building typology. The main objective of the parametric analysis is to compare the seismic performance of the structure as a function of the variations of its properties with respect to the response of a reference model. The parametric analysis was carried out for two types of structural analysis, namely for the non-linear dynamic analysis with time integration and for the pushover analysis with distribution of forces proportional to the inertial forces of the structure. The Young's modulus of the masonry walls, Young's modulus of the timber floors, the compressive and tensile non-linear properties (strength and fracture energy) were the properties considered in both type of analysis. Additionally, in the dynamic analysis, the influences of the vis-cous damping and of the vertical component of the earthquake were evaluated. A pushover analysis proportional to the modal displacement of the first mode in each direction was also carried out. The results shows that the Young's modulus of the masonry walls, the Young's modulus of the timber floors and the compressive non-linear properties are the pa-rameters that most influence the seismic performance of this type of tall and weak existing masonry structures. Furthermore, it is concluded that that the stiffness of the floors influences significantly the strength capacity and the collapse mecha-nism of the numerical model. Thus, a study on the strengthening of the floors was also carried out. The increase of the thickness of the timber floors was the strengthening technique that presented the best seismic performance, in which the reduction of the out-of-plane displacements of the masonry walls is highlighted.
Resumo:
Rammed earth is one of the oldest building materials in the world and is present in the Portugal with a particular focus in the South of the country. The mechanical properties and the structural behaviour of rammed earth constructions have been the subject of study of many researchers in the recent years. This study is part of a broader research on vernacular seismic culture in Portugal. Numerical analyses were carried out on a rammed earth masonry construction representative of the vernacular heritage of Alentejo region. Variations in the geometry, constructive characteristics and material properties were implemented and the main conclusions of the non-linear static and modal analysis are presented. Analysing the damage framework allowed interpreting the weaknesses of this type of constructions and consider the most appropriate reinforcement methodologies.
Resumo:
Immersive environments (IE) are being increasingly used in order to perform psychophysical experiments. The versatility in terms of stimuli presentation and control and the less time-consuming procedures are their greatest strengths. However, to ensure that IE results can be generalized to real world scenarios we must first provide evidence that performance in IE is quantitatively indistinguishable from performance in real-world. Our goal was to perceptually validate distance perception for CAVE-like IEs. Participants performed a Frontal Matching Distance Task (Durgin & Li, 2011) in three different conditions: real-world scenario (RWS); photorealistic IE (IEPH) and non-photorealistic IE (IENPH). Underestimation of distance was found across all the conditions, with a significant difference between the three conditions (Wilks’ Lambda = .38, F(2,134)= 110.8, p<.01, significant pairwise differences with p<.01). We found a mean error of 2.3 meters for the RWS, 5 meters for the IEPH, and of 6 meters for the IENPH in a pooled data set of 5 participants. Results indicate that while having a photorealistic IE with perspective and stereoscopic depth cues might not be enough to elicit a real-world performance in distance judgment tasks, nevertheless this type of environment minimizes the discrepancy between simulation and real-world when compared with non-photorealistic IEs.
Resumo:
In spite of all innovations in stent design, commonly used metallic stents present several problems such as corrosion, infection and restenosis, leading to health complications or even death of patients. In this context, the present paper reports a systematic investigation on designing and development of 100% fiber based stents, which can eliminate or minimize the problems with existing metallic stents. For this purpose, braided stents were produced by varying different materials, structural and process parameters such as mono-filament type and diameter, braiding angle and mandrel diameter. The influence of these design parameters on mechanical behavior as well as stent's porosity was thoroughly investigated, and suitable parameters were selected for developing a stentwith mechanical characteristics and porosity matching with the commercial stents. According to the experimental results, the best performance was achieved with a polyester stent designed with 0.27 mm monofilament diameter, braiding angle of 35° and mandrel diameter of 6 mm, providing similar properties to commercial Nitinol stents.
Resumo:
In this paper, we characterize the existence and give an expression of the group inverse of a product of two regular elements by means of a ring unit.
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Architectural (bad) smells are design decisions found in software architectures that degrade the ability of systems to evolve. This paper presents an approach to verify that a software architecture is smellfree using the Archery architectural description language. The language provides a core for modelling software architectures and an extension for specifying constraints. The approach consists in precisely specifying architectural smells as constraints, and then verifying that software architectures do not satisfy any of them. The constraint language is based on a propositional modal logic with recursion that includes: a converse operator for relations among architectural concepts, graded modalities for describing the cardinality in such relations, and nominals referencing architectural elements. Four architectural smells illustrate the approach.
Resumo:
In: A. Cunha, E. Kindler (eds.): Proceedings of the Fourth International Workshop on Bidirectional Transformations (Bx 2015), L’Aquila, Italy, July 24, 2015, published at http://ceur-ws.org
Resumo:
Hybrid logics, which add to the modal description of transition structures the ability to refer to specific states, offer a generic framework to approach the specification and design of reconfigurable systems, i.e., systems with reconfiguration mechanisms governing the dynamic evolution of their execution configurations in response to both external stimuli or internal performance measures. A formal representation of such systems is through transition structures whose states correspond to the different configurations they may adopt. Therefore, each node is endowed with, for example, an algebra, or a first-order structure, to precisely characterise the semantics of the services provided in the corresponding configuration. This paper characterises equivalence and refinement for these sorts of models in a way which is independent of (or parametric on) whatever logic (propositional, equational, fuzzy, etc) is found appropriate to describe the local configurations. A Hennessy–Milner like theorem is proved for hybridised logics.
Resumo:
In a reconfigurable system, the response to contextual or internal change may trigger reconfiguration events which, on their turn, activate scripts that change the system׳s architecture at runtime. To be safe, however, such reconfigurations are expected to obey the fundamental principles originally specified by its architect. This paper introduces an approach to ensure that such principles are observed along reconfigurations by verifying them against concrete specifications in a suitable logic. Architectures, reconfiguration scripts, and principles are specified in Archery, an architectural description language with formal semantics. Principles are encoded as constraints, which become formulas of a two-layer graded hybrid logic, where the upper layer restricts reconfigurations, and the lower layer constrains the resulting configurations. Constraints are verified by translating them into logic formulas, which are interpreted over models derived from Archery specifications of architectures and reconfigurations. Suitable notions of bisimulation and refinement, to which the architect may resort to compare configurations, are given, and their relationship with modal validity is discussed.
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
Dissertação de mestrado em Direito das Crianças, Família e Sucessões