4 resultados para Mitochondrial Aldehyde Dehydrogenase
em Universidade do Minho
Resumo:
Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a -hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to -hydroxybutyrate that may be converted to the energy and carbon storage compound, poly--hydroxybutyrate. Accordingly, we confirmed the formation of poly-?-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor.
Resumo:
The Optic atrophy 1 protein (OPA1) is a key element in the dynamics and morphology of mitochondria. We demonstrated that the absence of I?B kinase-a, which is a key element of the nonclassical NF-?B pathway, has an impact on the mitochondrial network morphology and OPA1 expression. In contrast, the absence of NF-?B essential modulator (NEMO) or I?B kinase-ß, both of which are essential for the canonical NF-?B pathway, has no impact on mitochondrial dynamics. Whereas Parkin has been reported to positively regulate the expression of OPA1 through NEMO, herein we found that PARK2 overexpression did not modify the expression of OPA1. PARK2 expression reduced the levels of Bax, and it prevented stress-induced cell death only in Bak-deficient mouse embryonic fibroblast cells. Collectively, our results point out a role of the nonclassical NF-?B pathway in the regulation of mitochondrial dynamics and OPA1 expression.
Resumo:
Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70-50 ka into Eastern or Southern Africa, (2) postglacial movements (15-10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations.
Resumo:
Dissertação de mestrado em Genética Molecular