11 resultados para Micro Product Development
em Universidade do Minho
Resumo:
Polymer binder modification with inorganic nanomaterials (NM) could be a potential and efficient solution to control matrix flammability of polymer concrete (PC) materials without sacrificing other important properties. Occupational exposures can occur all along the life cycle of a NM and “nanoproducts” from research through scale-up, product development, manufacturing, and end of life. The main objective of the present study is to analyse and compare different qualitative risk assessment methods during the production of polymer mortars (PM) with NM. The laboratory scale production process was divided in 3 main phases (pre-production, production and post-production), which allow testing the assessment methods in different situations. The risk assessment involved in the manufacturing process of PM was made by using the qualitative analyses based on: French Agency for Food, Environmental and Occupational Health & Safety method (ANSES); Control Banding Nanotool (CB Nanotool); Ecole Polytechnique Fédérale de Lausanne method (EPFL); Guidance working safely with nanomaterials and nanoproducts (GWSNN); Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, Italy method (ISPESL); Precautionary Matrix for Synthetic Nanomaterials (PMSN); and Stoffenmanager Nano. It was verified that the different methods applied also produce different final results. In phases 1 and 3 the risk assessment tends to be classified as medium-high risk, while for phase 2 the more common result is medium level. It is necessary to improve the use of qualitative methods by defining narrow criteria for the methods selection for each assessed situation, bearing in mind that the uncertainties are also a relevant factor when dealing with the risk related to nanotechnologies field.
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.
Resumo:
In this paper, we present a new course entitled “Biomimicry: from life to nanotechnological innovations” at the Mines Nancy Engineering School, Nancy, France, and explain how we developed a specific curriculum covering biomimicry. We discuss strategies that can be followed by teachers to explain selected contents in the multi-disciplinary field of biomimicry and/or bioinspiration to undergraduate students and how practical classroom activities can be conducted as individual or team work. We hope that sharing our experience will help teachers and senior researchers disseminate useful concepts and real examples of biomimetic principles and tools for the development of new materials, new/improved design and fabrication strategies, and innovation methodologies.
Resumo:
This paper presents the development of the power electronics needed for the interaction between the electrical generator of a wind turbine and an isolated ac micro grid. In this system there are basically two types of receptors for the energy produced by the wind turbine, which are the loads connected to the isolated micro grid and the batteries used to store energy. There are basically two states in which the system will work. One of the states is when there is enough wind power to supply the loads and the extra energy is used to charge the batteries. The other state is when there is low wind power and the batteries have to compensate the lack of power, so that the isolated micro grid has enough power to supply at least the priority loads. In this paper are presented the hardware and the control algorithm for the developed system. The topology was previously tested in computer simulations, using the software PSIM 9.0, and then validated with the implementation of a laboratory prototype.
Resumo:
[Extrat] Currently there is a growing interest in the development of eco-efficient bio-based packaging, being active, smart and intelligent packaging the most highlighted among various innovations. Intelligent packaging has the ability to detect and mark, in real time, changes that might occur within the package/in the food product. Their main purpose is to help the consumer decide whether to buy a certain food product, ensuring that when it is bought it has not suffered significant changes influencing its quality and safety. (...)
Resumo:
Concrete is the primary construction material for civil infrastructures and generally consists of cement, coarse aggregates, sand, admixtures and water. Cementitious materials are characterized by quasi-brittle behaviour and susceptible to cracking [1]. The cracking process within concrete begins with isolated nano-cracks, which then conjoin to form micro-cracks and in turn macro-cracks. Formation and growth of cracks lead to loss of mechanical performance with time and also make concrete accessible to water and other degrading agents such as CO2, chlorides, sulfates, etc. leading to strength loss and corrosion of steel rebars. To improve brittleness of concrete, reinforcements such as polymeric as well as glass and carbon fibers have been used and microfibers improved the mechanical properties significantly by delaying (but could not stop) the transformation of micro-cracks into macro forms [2]. This fact encouraged the use of nano-sized fillers in concrete to prevent the growth of nano-cracks transforming in to micro and macro forms. Nanoparticles like SiO2, Fe2O3, and TiO2 led to considerable improvement in mechanical performance and moreover, nano-TiO2 helped to remove organic pollutants from concrete surfaces [3].
Resumo:
Abstract Dataflow programs are widely used. Each program is a directed graph where nodes are computations and edges indicate the flow of data. In prior work, we reverse-engineered legacy dataflow programs by deriving their optimized implementations from a simple specification graph using graph transformations called refinements and optimizations. In MDE-speak, our derivations were PIM-to-PSM mappings. In this paper, we show how extensions complement refinements, optimizations, and PIM-to-PSM derivations to make the process of reverse engineering complex legacy dataflow programs tractable. We explain how optional functionality in transformations can be encoded, thereby enabling us to encode product lines of transformations as well as product lines of dataflow programs. We describe the implementation of extensions in the ReFlO tool and present two non-trivial case studies as evidence of our work’s generality
Resumo:
Inspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics. As the interaction of biomaterials with the biological milieu occurs at the surface of the materials, it is expected that synthetic substrates with extreme and controllable wettability ranging from superhydrophilic to superhydrophobic regimes could bring about the possibility of new investigations of cellâ material interactions on nonconventional surfaces and the development of alternative devices with biomedical utility. This first part of the review will describe in detail how proteins and cells interact with micro/nano-structured surfaces exhibiting extreme wettabilities.
Resumo:
PhD in Chemical and Biological Engineering