32 resultados para Matrices.
em Universidade do Minho
Resumo:
Innovative composite materials made of continuous fibers embedded in mortar matrices have been recently received attention for externally bonded reinforcement of masonry structures. In this regards, application of natural fibers for strengthening of the repair mortars is attractive due to their low specific weight, sustainability and recycability. This paper presents experimental characterization of tensile and pull-out behavior of natural fibers embedded in two different mortar-based matrices. A lime-based and a geopolymeric-based mortar are used as sustainable and innovative matrices. The obtained experimental results and observations are presented and discussed.
Resumo:
Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology
Resumo:
Understanding the mixing process of complex composite materials is fundamental in several industrial processes. For instance, the dispersion of fillers in polymer melt matrices is commonly employed to manufacture polymer composites, using a twin-screw extruder. The effectiveness of the filler dispersion depends not only on the complex flow patterns generated, but also on the polymer melt rheological behavior. Therefore, the availability of a numerical tool able to predict mixing, taking into account both fluid and particles phases would be very useful to increase the process insight, and thus provide useful guidelines for its optimization. In this work, a new Eulerian-Lagrangian numerical solver is developed OpenFOAM® computational library, and used to better understand the mechanisms determining the dispersion of fillers in polymer matrices. Particular attention will be given to the effect of the rheological model used to represent the fluid behavior, on the level of dispersion obtained. For the Eulerian phase the averaged volume fraction governing equations (conservation of mass and linear momentum) are used to describe the fluid behavior. In the case of the Lagrangian phase, Newton’s second law of motion is used to compute the particles trajectories and velocity. To study the effect of fluid behavior on the filler dispersion, several systems are modeled considering different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to correlate the fluid and particle characteristics on the effectiveness of mixing and morphology obtained.
Resumo:
How much can be said about the location of the eigenvalues of a symmetric tridiagonal matrix just by looking at its diagonal entries? We use classical results on the eigenvalues of symmetric matrices to show that the diagonal entries are bounds for some of the eigenvalues regardless of the size of the off-diagonal entries. Numerical examples are given to illustrate that our arithmetic-free technique delivers useful information on the location of the eigenvalues.
Resumo:
Here, we define and consider (linear) TP-directions and TP-paths for a totally nonnegative matrix, in an effort to more deeply understand perturbation of a TN matrix to a TP matrix. We give circumstances in which a TP-direction exists and an example to show that they do not always exist. A strategy to give (nonlinear) TP-paths is given (and applied to this example). A long term goal is to understand the sparsest TP-perturbation for application to completion problems.
Resumo:
Lactic acid bacteria (LAB) play a key role in the biopreservation of a wide range of fermented food products, such as yogurt, cheese, fermented milks, meat, fish, vegetables (sauerkraut, olives and pickles), certain beer brands, wines and silage, allowing their safe consumption, which gave to these bacteria a GRAS (Generally Recognised as Safe) status. Besides that, the use of LAB in food and feed is a promising strategy to reduce the exposure to dietary mycotoxins, improving their shelf life and reducing health risks, given the unique mycotoxin decontaminating characteristic of some LAB. Mycotoxins present carcinogenic, mutagenic, teratogenic, neurotoxic and immunosuppressive effects over animals and Humans, being the most important ochratoxin A (OTA), aflatoxins (AFB1), trichothecenes, zearalenone (ZEA), fumonisin (FUM) and patulin. In a previous work of our group it was observed OTA biodegradation by some strains of Pediococcus parvulus isolated from Douro wines. So, the aim of this study was to enlarge the screening of the biodetoxification over more mycotoxins besides OTA, including AFB1, and ZEA. This ability was checked in a collection of LAB isolated from vegetable (wine, olives, fruits and silage) and animal (milk and dairy products, sausages) sources. All LAB strains were characterized phenotypically (Gram, catalase) and genotypically. Molecular characterisation of all LAB strains was performed using genomic fingerprinting by MSP- PCR with (GTG)5 and csM13 primers. The identification of the isolates was confirmed by 16S rDNA sequencing. To study the ability of LAB strains to degrade OTA, AFB1 and ZEA, a MRS broth medium was supplemented with 2.0 g/mL of each mycotoxin. For each strain, 2 mL of MRS supplemented with the mycotoxins was inoculated in triplicate with 109 CFU/mL. The culture media and bacterial cells were extracted by the addition of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v) to the culture tubes. A 2 mL sample was then collected and filtered into a clean 2 mL vial using PP filters with 0.45 m pores. The samples were preserved at 4 °C until HPLC analysis. Among LAB tested, 10 strains isolated from milk were able to eliminate AFB1, belonging to Lactobacillus casei (7), Lb. paracasei (1), Lb. plantarum (1) and 1 to Leuconostoc mesenteroides. Two strains of Enterococcus faecium and one of Ec. faecalis from sausage eliminated ZEA. Concerning to strains of vegetal origin, one Lb. plantarum isolated from elderberry fruit, one Lb. buchnerii and one Lb. parafarraginis both isolated from silage eliminated ZEA. Other 2 strains of Lb. plantarum from silage were able to degrade both ZEA and OTA, and 1 Lb. buchnerii showed activity over AFB1. These enzymatic activities were also verified genotypically through specific gene PCR and posteriorly confirmed by sequencing analysis. In conclusion, due the ability of some strains of LAB isolated from different sources to eliminate OTA, AFB1 and ZEA one can recognize their potential biotechnological application to reduce the health hazards associated with these mycotoxins. They may be suitable as silage inoculants or as feed additives or even in food industry.
Resumo:
PhD in Chemical and Biological Engineering
Epidermis recreation in spongy-like hydrogels: New opportunities to explore epidermis-like analogues
Resumo:
[Excerpt] On the road to successfully achieving skin regeneration, 3D matrices/scaffolds that provide the adequate physico-chemical and biological cues to recreate the ideal healing environment are believed to be a key element [1], [2] and [3]. Numerous polymeric matrices derived from both natural [4] and [5] and synthetic [6], [7] and [8] sources have been used as cellular supports; nowadays, fewer matrices are simple carriers, and more and more are ECM analogues that can actively participate in the healing process. Therefore, the attractive characteristics of hydrogels, such as high water content, tunable elasticity and facilitated mass transportation, have made them excellent materials to mimic cells’ native environment [9]. Moreover, their hygroscopic nature [10] and possibility of attaining soft tissues-like mechanical properties mean they have potential for exploitation as wound healing promoters [11], [12], [13] and [14]. Nonetheless, hydrogels lack natural cell adhesion sites [15], which limits the maximization of their potential in the recreation of the cell niche. This issue has been tackled through the use of a range of sophisticated approaches to decorate the hydrogels with adhesion sequences such as arginine-glycine-aspartic acid (RGD) derived from fibronectin [16], [17] and [18], and tyrosine-isoleucine-glycine-serine-arginine (YIGSR) derived from laminin [18] and [19], which not only aim to modulate cell adhesion, but also influencing cell fate and survival [18]. Nonetheless, its widespread use is still limited by significant costs associated with the use of recombinant bioactive molecules.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
The incorporation of fly ash (FA) in cementitious matrices have been frequently used in order to make the matrix more resistant to the action of chlorides. On the other hand, it is known that Ca (OH)2 existing in the matrix is partially consumed by the pozzolanic reactions, which facilitates the advancement of carbonation. Given that the combined action between carbonation and chloride penetration is a fact little known, we speculate about the behaviour of the matrix in this context. This study investigates the influence of the presence of chlorides on the carbonation in mortars with FA. Samples with 0% and 40% replacement of cement CEM I 42.5 R for FA were molded with water/binder 0.56 and 0.52 respectively. After 90 days of curing the specimens were subjected to cycles of immersion/drying for 56 days. Half of the samples was subjected to the following cycle: two days in a solution containing NaCl (concentration equal to 3.5 %); 12 days in the carbonation chamber (4% of CO2). The other half was: two days in water; 12 days in the carbonation chamber. Then, the development of carbonation was evaluated. The results indicate that the presence of chlorides influences the carbonation. The specimens submitted to the exclusive action of CO2 showed a greater depth of carbonation compared to that presented by the specimens subjected to combined action. This may be related to changes in properties of the matrix which may lead to further refinement of the pores and related to the presence of the salt that can lead to partial filling of the pores and the increase in moisture content.
Resumo:
Traffic Engineering (TE) approaches are increasingly impor- tant in network management to allow an optimized configuration and resource allocation. In link-state routing, the task of setting appropriate weights to the links is both an important and a challenging optimization task. A number of different approaches has been put forward towards this aim, including the successful use of Evolutionary Algorithms (EAs). In this context, this work addresses the evaluation of three distinct EAs, a single and two multi-objective EAs, in two tasks related to weight setting optimization towards optimal intra-domain routing, knowing the network topology and aggregated traffic demands and seeking to mini- mize network congestion. In both tasks, the optimization considers sce- narios where there is a dynamic alteration in the state of the system, in the first considering changes in the traffic demand matrices and in the latter considering the possibility of link failures. The methods will, thus, need to simultaneously optimize for both conditions, the normal and the altered one, following a preventive TE approach towards robust configurations. Since this can be formulated as a bi-objective function, the use of multi-objective EAs, such as SPEA2 and NSGA-II, came nat- urally, being those compared to a single-objective EA. The results show a remarkable behavior of NSGA-II in all proposed tasks scaling well for harder instances, and thus presenting itself as the most promising option for TE in these scenarios.
Resumo:
In this work, a steel heated pultrusion die was designed, developed and manufactured to produce U200 glass fibre reinforced thermosetting matrix (GRP) profiles. The finite element analysis (FEA) was used to predict and optimise the developed die heating by using cylindrical electrical powered cartridges. To assess the new die performance it was mounted in the 120 kN pultrusion line of the Portuguese company Vidropol SA and used to produce continuously U200 profiles able to meet all requirements specified for the E23 grade accordingly to the European Standard EN 13706: 2002. After setting up the type, orientation and sequence of layers in laminate, orthophthalic, isophthalic and bisphenolic unsaturated polyester as well as vinylester resins were used to produce glass fibre reinforced U 200 composite profiles. An appropriated catalyst system was selected and the processing variables optimised for each case, namely, pultrusion pull-speed and die temperature. Finally, the produced U200 profiles were submitted to visual inspection, calcination and mechanical tests, namely, flexural, tensional and interlaminar shear strength (ILSS) tests, to assess their accomplishment with the EN 13706 requirements.
Resumo:
In this work, a new steel heated pultrusion die was designed, developed and manufactured to produce U200 glass fibre reinforced thermosetting matrix (GRP) profiles. The finite element analysis (FEA) was used to predict and optimise the developed die heating by using cylindrical electrical powered cartridges. To assess the new die performance it was mounted in the 120 kN pultrusion line of the Portuguese company Vidropol SA and used to produce continuously U200 profiles able to meet all requirements specified for the E23 grade accordingly to the European Standard EN 13706: 2002. After setting up the type, orientation and sequence of layers in the U 200 laminate, different types of thermosetting resins were used in its production. Orthophthalic, isophthalic and bisphenolic unsaturated polyester as well as vinylester resins were used to produce glass fibre reinforced U 200 composite profiles. All applied resins were submitted to SPI gel tests in order to select the more appropriated catalyst system and optimise the processing variables to be used in each case, namely, pultrusion pull-speed and die temperature. The best pultrusion operational conditions were selected by varying and monitoring the pull-speed and die temperature and, at the same time, measuring the temperature on the manufactured U 200 profile during processing. Finally, the produced U200 profiles were submitted to visual inspection, calcination and mechanical tests, namely, flexural, tensional and interlaminar shear strength (ILSS) tests, to assess their accomplishment with the EN 13706 requirements.
Resumo:
Pultrusion is a versatile continuous high speed production technology allowing the production of fibre reinforced complex profiles. Thermosetting resins are normally used as matrices in the production of structural constant cross section profiles. Although only recently thermoplastic matrices have been used in long and continuous fibre reinforced composites replacing with success thermosetting matrices, the number of their applications is increasing due to their better ecological and mechanical performance. Composites with thermoplastic matrices offers increased fracture toughness, higher impact tolerance, short processing cycle time and excellent environmental stability. They are recyclable, post-formable and can be joined by welding. The use of long/continuous fibre reinforced thermoplastic matrix composites involves, however, great technological and scientific challenges since thermoplastics present much higher viscosity than thermosettings, which makes much difficult and complex the impregnation of reinforcements and consolidation tasks. In this work continuous fibres reinforced thermoplastic matrix towpregs were produced using equipment developed by the Institute for Polymers and Composites (IPC). The processing of the towpregs was made by pultrusion, in a developed prototype equipment existing in the Engineering School of the Polytechnic Institute of Porto (ISEP). Different thermoplastic matrices and fibres raw-materials were used in this study to manufacture pultruded composites for commercial applications (glass and carbon fibre/ polypropylene) and for advanced markets (carbon fibre/Primospire®). To improve the temperature distribution profile in heating die, different modifications were performed. In order to optimize both processes, towpregs production and pultruded composites profiles were analysed to determine the influence of the most relevant processing arameters in the final properties. The final pultruded composite profiles were submitted to mechanical tests to obtain the relevant properties.
Resumo:
Tese de Doutoramento Engenharia Têxtil