8 resultados para Manganese determination
em Universidade do Minho
Resumo:
It is successfully demonstrated that nanoparticle’s magnetostriction can be accurately determined based on the magnetoelectric effect measured on polymeric-composite materials. This represents a novel, simple and versatile method for the determination of particle’s magnetostriction at their nano-sized and dispersed state, which is, up to date, a difficult and imprecise task.
Resumo:
Studies of the spin and parity quantum numbers of the Higgs boson in the WW∗→eνμν final state are presented, based on proton--proton collision data collected by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s√=8 TeV. The Standard Model spin-parity JCP=0++ hypothesis is compared with alternative hypotheses for both spin and CP. The case where the observed resonance is a mixture of the Standard-Model-like Higgs boson and CP-even (JCP=0++) or CP-odd (JCP=0+−) Higgs boson in scenarios beyond the Standard Model is also studied. The data are found to be consistent with the Standard Model prediction and limits are placed on alternative spin and CP hypotheses, including CP mixing in different scenarios.
Resumo:
The normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt¯+1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton--proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb−1. The selected events were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, mpolet, is: mpolet =173.7 ± 1.5 (stat.) ± 1.4 (syst.) +1.0−0.5 (theory) GeV. This result represents the most precise measurement of the top-quark pole mass to date.
Resumo:
High transverse momentum jets produced in pp collisions at a centre of mass energy of 7 TeV are used to measure the transverse energy--energy correlation function and its associated azimuthal asymmetry. The data were recorded with the ATLAS detector at the LHC in the year 2011 and correspond to an integrated luminosity of 158 pb−1. The selection criteria demand the average transverse momentum of the two leading jets in an event to be larger than 250 GeV. The data at detector level are well described by Monte Carlo event generators. They are unfolded to the particle level and compared with theoretical calculations at next-to-leading-order accuracy. The agreement between data and theory is good and provides a precision test of perturbative Quantum Chromodynamics at large momentum transfers. From this comparison, the strong coupling constant given at the Z boson mass is determined to be αs(mZ)=0.1173±0.0010 (exp.) +0.0065−0.0026 (theo.).
Resumo:
Manganese ferrite nanoparticles with a size distribution of 26 ± 7 nm (from TEM measurements) were synthesized by the coprecipitation method. The obtained nanoparticles exhibit a superparamagnetic behaviour at room temperature with a magnetic squareness of 0.016 and a coercivity field of 6.3 Oe. These nanoparticles were either entrapped in liposomes (aqueous magnetoliposomes, AMLs) or covered with a lipid bilayer, forming solid magnetoliposomes (SMLs). Both types of magnetoliposomes, exhibiting sizes below or around 150 nm, were found to be suitable for biomedical applications. Membrane fusion between magnetoliposomes (both AMLS and SMLs) and GUVs (giant unilamellar vesicles), the latter used as models of cell membranes, was confirmed by F¨orster Resonance Energy Transfer (FRET) assays, using a NBD labeled lipid as the energy donor and Nile Red or rhodamine B-DOPE as the energy acceptor. A potential antitumor thienopyridine derivative was successfully incorporated into both aqueous and solid magnetoliposomes, pointing to a promising application of these systems in oncological therapy, simultaneously as hyperthermia agents and nanocarriers for antitumor drugs.
Resumo:
Publicado em "NanoPT2016 book of abstracts"
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
[Excerpt] Introduction: There has been a considerable amount of controversy about the use of manometric methods to measure catalase activity. As Maehly and Chance point out in their excellent review] the advantages of these methods is "... that they can be used for any kind of biological material, and purification of the enzyme is not required. The assay is independent of small amounts of peroxidase activity. It is fairly simple to perform, it is rapid and it can be adapted to continuous reading of the reaction". A variety of drawbacks are also listed by the same authors, viz, the inactivation of the enzyme under the experimental conditions and the time lag before a constant rate of oxygen evolution is reached. [...]