6 resultados para MEMBRANE-VESICLES
em Universidade do Minho
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
Analogues of Peptaibolin, a peptaibol with antibiotic activity, incorporating α,α-dialkylglycines (Deg, Dpg, and Ac6c) at selected positions were synthesised by MW-SPPS and fully characterized. A control analogue incorporating L-alanine was also prepared. The native peptide and the analogues were studied by fluorescence spectroscopy for their membrane permeating activity. Small unilamellar vesicles (SUVs) of egg phosphatidylcholine/ cholesterol (70:30) containing an encapsulated fluorescence probe (6-carboxyfluorescein) were used as membrane models. The assays of carboxyfluorescein release from SUVs upon peptide addition showed that Peptaibolin-Dpg and Peptaibolin-Ac6c are the most active peptides. These results indicate that the structure of the α,α-dialkylglycines is crucial for the membrane permeating ability of these Peptaibolin analogues.
Resumo:
Recent advances in computation allow for the integration of design and simulation of highly interrelated systems, such as hybrids of structural membranes and bending active elements. The engaged complexities of forces and logistics can be mediated through the development of materials with project specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Dissertação de mestrado em Bioquímica Aplicada – Biomedicina
Resumo:
Manganese ferrite nanoparticles with a size distribution of 26 ± 7 nm (from TEM measurements) were synthesized by the coprecipitation method. The obtained nanoparticles exhibit a superparamagnetic behaviour at room temperature with a magnetic squareness of 0.016 and a coercivity field of 6.3 Oe. These nanoparticles were either entrapped in liposomes (aqueous magnetoliposomes, AMLs) or covered with a lipid bilayer, forming solid magnetoliposomes (SMLs). Both types of magnetoliposomes, exhibiting sizes below or around 150 nm, were found to be suitable for biomedical applications. Membrane fusion between magnetoliposomes (both AMLS and SMLs) and GUVs (giant unilamellar vesicles), the latter used as models of cell membranes, was confirmed by F¨orster Resonance Energy Transfer (FRET) assays, using a NBD labeled lipid as the energy donor and Nile Red or rhodamine B-DOPE as the energy acceptor. A potential antitumor thienopyridine derivative was successfully incorporated into both aqueous and solid magnetoliposomes, pointing to a promising application of these systems in oncological therapy, simultaneously as hyperthermia agents and nanocarriers for antitumor drugs.