6 resultados para LM-tietopalvelut

em Universidade do Minho


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Português Língua Não Materna (PLNM) – Português Língua Estrangeira (PLE) e Língua Segunda (PL2)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Ensino do Português no 3º ciclo do Ensino Básico e Ensino Secundário e do Espanhol nos Ensinos Básico e Secundário

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increase in heavy metal contamination in freshwater systems causes serious environmental problems in most industrialized countries, and the effort to find ecofriendly techniques for reducing water and sediment contamination is fundamental for environmental protection. Permeable barriers made of natural clays can be used as low-cost and eco-friendly materials for adsorbing heavy metals from water solution and thus reducing the sediment contamination. This study discusses the application of permeable barriers made of vermiculite clay for heavy metals remediation at the interface between water and sediments and investigates the possibility to increase their efficiency by loading the vermiculite surface with a microbial biofilm of Pseudomonas putida, which is well known to be a heavy metal accumulator. Some batch assays were performed to verify the uptake capacity of two systems and their adsorption kinetics, and the results indicated that the vermiculite bio-barrier system had a higher removal capacity than the vermiculite barrier (?34.4 and 22.8 % for Cu and Zn, respectively). Moreover, the presence of P. putida biofilm strongly contributed to fasten the kinetics of metals adsorption onto vermiculite sheets. In open-system conditions, the presence of a vermiculite barrier at the interface between water and sediment could reduce the sediment contamination up to 20 and 23 % for Cu and Zn, respectively, highlighting the efficiency of these eco-friendly materials for environmental applications. Nevertheless, the contribution of microbial biofilm in open-system setup should be optimized, and some important considerations about biofilm attachment in a continuous-flow system have been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00390