11 resultados para Iroquois language--Ontario, Southern.

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper assesses land-use changes related to naturbanization processes on three biosphere reserves in Southern Europe. A comparative analysis has been done on the National Parks in Peneda-Ger^es in North Portugal, C_evennes in South France and Sierra Nevada in South Spain, using Corine Land Cover data from 1990 until 2006. Results indicate that the process of land-use intensification is taking place in the frame of naturbanization dynamics that could jeopardize the role of Protected Areas. Focusing on the trends faced by National Parks and their surrounding territories, the analysis demonstrates, both in quantitative and spatial terms, the intensification processes of land-use changes and how it is important to know them for coping with increasing threats. The article concludes that in the current context of increasing stresses, a broader focus on nature protection, encompassing the wider countryside, is needed if the initiatives for biodiversity protection are to be effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last few years many research efforts have been done to improve the design of ETL (Extract-Transform-Load) systems. ETL systems are considered very time-consuming, error-prone and complex involving several participants from different knowledge domains. ETL processes are one of the most important components of a data warehousing system that are strongly influenced by the complexity of business requirements, their changing and evolution. These aspects influence not only the structure of a data warehouse but also the structures of the data sources involved with. To minimize the negative impact of such variables, we propose the use of ETL patterns to build specific ETL packages. In this paper, we formalize this approach using BPMN (Business Process Modelling Language) for modelling more conceptual ETL workflows, mapping them to real execution primitives through the use of a domain-specific language that allows for the generation of specific instances that can be executed in an ETL commercial tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today it is easy to find a lot of tools to define data migration schemas among different types of information systems. Data migration processes use to be implemented on a very diverse range of applications, ranging from conventional operational systems to data warehousing platforms. The implementation of a data migration process often involves a serious planning, considering the development of conceptual migration schemas at early stages. Such schemas help architects and engineers to plan and discuss the most adequate way to migrate data between two different systems. In this paper we present and discuss a way for enriching data migration conceptual schemas in BPMN using a domain-specific language, demonstrating how to convert such enriched schemas to a first correspondent physical representation (a skeleton) in a conventional ETL implementation tool like Kettle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study reported here aims at contributing to a deeper understanding of the educational possibilities offered by digital manipulatives in preschool contexts. It presents a study carried with a digital manipulative to enhance the development of lexical knowledge and language awareness, which are relevant language abilities for formal literacy learning. The study took place in a Portuguese preschool, with a class of 20 five-year-olds in collaboration with the teacher. The digital manipulative supported the construction of multiple fictional worlds, motivating children's verbal interactions, and the playing of words and sound games, thus contextualizing the learning of an extensive collection of vocabulary and language awareness abilities. The degree of engagement and involvement that the manipulative provided in supporting children’s imaginative play as well as the imitation, in their own play, of the playful pedagogical interventions that the teacher had designed, shows the importance of well- designed materials that support a child-centered learning model. As such, it sustains a discussion on the potential of digital manipulatives to enhance fundamental language development in the preschool years. Further, the study highlights the importance of multidisciplinary teams in the creation of innovative pedagogical materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have demonstrated the positive effects of musical training on the perception of vocally expressed emotion. This study investigated the effects of musical training on event-related potential (ERP) correlates of emotional prosody processing. Fourteen musicians and fourteen control subjects listened to 228 sentences with neutral semantic content, differing in prosody (one third with neutral, one third with happy and one third with angry intonation), with intelligible semantic content (semantic content condition--SCC) and unintelligible semantic content (pure prosody condition--PPC). Reduced P50 amplitude was found in musicians. A difference between SCC and PPC conditions was found in P50 and N100 amplitude in non-musicians only, and in P200 amplitude in musicians only. Furthermore, musicians were more accurate in recognizing angry prosody in PPC sentences. These findings suggest that auditory expertise characterizing extensive musical training may impact different stages of vocal emotional processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Architectural (bad) smells are design decisions found in software architectures that degrade the ability of systems to evolve. This paper presents an approach to verify that a software architecture is smellfree using the Archery architectural description language. The language provides a core for modelling software architectures and an extension for specifying constraints. The approach consists in precisely specifying architectural smells as constraints, and then verifying that software architectures do not satisfy any of them. The constraint language is based on a propositional modal logic with recursion that includes: a converse operator for relations among architectural concepts, graded modalities for describing the cardinality in such relations, and nominals referencing architectural elements. Four architectural smells illustrate the approach.