9 resultados para Integración of methods

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme value theory (EVT) deals with the occurrence of extreme phenomena. The tail index is a very important parameter appearing in the estimation of the probability of rare events. Under a semiparametric framework, inference requires the choice of a number k of upper order statistics to be considered. This is the crux of the matter and there is no definite formula to do it, since a small k leads to high variance and large values of k tend to increase the bias. Several methodologies have emerged in literature, specially concerning the most popular Hill estimator (Hill, 1975). In this work we compare through simulation well-known procedures presented in Drees and Kaufmann (1998), Matthys and Beirlant (2000), Beirlant et al. (2002) and de Sousa and Michailidis (2004), with a heuristic scheme considered in Frahm et al. (2005) within the estimation of a different tail measure but with a similar context. We will see that the new method may be an interesting alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Zero waste management is believed to be one of methods to gain sustainability in urban areas. Take advantages of resources as enough as the needs and process it until the last part to be wasted is a contribution to take care the environment for the next generation. Reduce, reuse, and recycle are three simplesactivities which are until nowadays consideredas the back bone of zero waste. Jonggolgreen city is a new urban area in Indonesia with a 100 ha of surface area zoned as education tourism area. It is an independent area with pure natural resources of water, air, and land to be managed and protected. It is planned as green city through zero waste management since2013. In this preliminary period, a monitoring tool is being prepared by applying a Life Cycle Analysis (LCA) for urban areas [1]. This paper will present an explanatory assessment ofthe zero waste management for Jonggolgreen city. The existing situation will be examined through LCA and afterwards,the new program and the proposed green design to gain the next level of zero waste will be discussed. The purpose is to track the persistence of the commitment and the perception of the necessary innovationsin order to achieve the ideal behavior level of LCA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a framework of competences developed for Industrial Engineering and Management that can be used as a tool for curriculum analysis and design, including the teaching and learning processes as well as the alignment of the curriculum with the professional profile. The framework was applied to the Industrial Engineering and Management program at University of Minho (UMinho), Portugal, and it provides an overview of the connection between IEM knowledge areas and the competences defined in its curriculum. The framework of competences was developed through a process of analysis using a combination of methods and sources for data collection. The framework was developed according to four main steps: 1) characterization of IEM knowledge areas; 2) definition of IEM competences; 3) survey; 4) application of the framework at the IEM curriculum. The findings showed that the framework is useful to build an integrated vision of the curriculum. The most visible aspect in the learning outcomes of IEM program is the lack of balance between technical and transversal competences. There was not almost any reference to the transversal competences and it is fundamentally concentrated on Project-Based Learning courses. The framework presented in this paper provides a contribution to the definition of IEM professional profile through a set of competences which need to be explored further. In addition, it may be a relevant tool for IEM curriculum analysis and a contribution for bridging the gap between universities and companies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Técnicas de Caraterização e Análise Química