19 resultados para Homeostasis Model Assessment
em Universidade do Minho
Resumo:
Maturity models are adopted to minimise our complexity perception over a truly complex phenomenon. In this sense, maturity models are tools that enable the assessment of the most relevant variables that impact on the outputs of a specific system. Ideally a maturity model should provide information concerning the qualitative and quantitative relationships between variables and how they affect the latent variable, that is, the maturity level. Management systems (MSs) are implemented worldwide and by an increasing number of companies. Integrated management systems (IMSs) consider the implementation of one or several MSs usually coexisting with the quality management subsystem (QMS). It is intended in this chapter to report a model based on two components that enables the assessment of the IMS maturity, considering the key process agents (KPAs) identified through a systematic literature review and the results collected from two surveys.
Resumo:
Objective To determine whether the use of 3-dimensional (3D) imaging translates into a better surgical performance of naïve urologic laparoscopic surgeons during pyeloplasty (PY) and partial nephrectomy (PN) procedures. Materials and Methods Eighteen surgeons without any previous laparoscopic experience were randomly assigned to perform PY and PN in a porcine model using initially 2-dimensional (2D) and 3D laparoscopy. A surgical performance score was rated by an "expert" tutor through a modified 5-item global rating scale contemplating operative field view, bimanual dexterity, efficiency, tissue handling, and autonomy. Overall surgical time, complications, subjective perception of participating surgeons, and inconveniences related to the 3D vision were recorded. Results No difference in terms if operative time was found between 2D or 3D laparoscopy for both the PY (P =.51) and the PN (P =.28) procedures. A better rate in terms of surgical performance score was noted by the tutors when the study participants were using 3D vs 2D, for both PY (3.6 [0.8] vs 3.0 [0.4]; P =.034) and PN (3.6 [0.51] vs 3.15 [0.63]; P =.001). No complications occurred in any of the procedures. Most (77.2%) of the participating na??ve laparoscopic surgeons had the perception that 3D laparoscopy was overall easier than 2D. Headache (18.1%), nausea (18.1%), and visual disturbance (18.1%) were the most common issues reported by the surgeons during 3D procedures. Conclusion Despite the absence of translation in a shorter operative time, the use of 3D technology seems to facilitate the surgical performance of naive surgeons during laparoscopic kidney procedures on a porcine model.
Resumo:
Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.
Resumo:
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 x 2550 x 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.
Resumo:
The present work describes a model for the determination of the moment–rotation relationship of a cross section of fiber reinforced concrete (FRC) elements that also include longitudinal bars for the flexural reinforcement (R/FRC). Since a stress–crack width relationship (σ–w)(σ–w) is used to model the post-cracking behavior of a FRC, the σ–w directly obtained from tensile tests, or derived from inverse analysis applied to the results obtained in three-point notched beam bending tests, can be adopted in this approach. For a more realistic assessment of the crack opening, a bond stress versus slip relationship is assumed to simulate the bond between longitudinal bars and surrounding FRC. To simulate the compression behavior of the FRC, a shear friction model is adopted based on the physical interpretation of the post-peak compression softening behavior registered in experimental tests. By allowing the formation of a compressive FRC wedge delimited by shear band zones, the concept of concrete crushing failure mode in beams failing in bending is reinterpreted. By using the moment–rotation relationship, an algorithm was developed to determine the force–deflection response of statically determinate R/FRC elements. The model is described in detail and its good predictive performance is demonstrated by using available experimental data. Parametric studies were executed to evidence the influence of relevant parameters of the model on the serviceability and ultimate design conditions of R/FRC elements failing in bending.
Numerical Assessment of the out-of-plane response of a brick masonry structure without box behaviour
Resumo:
This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the
Resumo:
This paper reports on a structural safety assessment and performance evaluation of the upper choir of the Santa Maria de Belém Church in the Jerónimos monastery, Lisbon, one of the most important cultural heritage buildings in Portugal. The possibility of adding a new 20 t organ to the upper choir and its effects on the church structure's response are presented. A refined and a simplified finite-element model is developed to investigate the structure's performance under self-weight and seismic actions. A sensitivity analysis is performed to investigate the effect of masonry mechanical properties and rib cross-sections on the structural response, given the difficulty in accurately obtaining this information. The results show that the safety level of the structure is acceptable, even in the case of adding a heavy new organ.
Resumo:
BACKGROUND: Furniture companies can analyze their safety status using quantitative measures. However, the data needed are not always available and the number of accidents is under-reported. Safety climate scales may be an alternative. However, there are no validated Portuguese scales that account for the specific attributes of the furniture sector. OBJECTIVE: The current study aims to develop and validate an instrument that uses a multilevel structure to measure the safety climate of the Portuguese furniture industry. METHODS: The Safety Climate in Wood Industries (SCWI) model was developed and applied to the safety climate analysis using three different scales: organizational, group and individual. A multilevel exploratory factor analysis was performed to analyze the factorial structure. The studied companies’ safety conditions were also analyzed. RESULTS: Different factorial structures were found between and within levels. In general, the results show the presence of a group-level safety climate. The scores of safety climates are directly and positively related to companies’ safety conditions; the organizational scale is the one that best reflects the actual safety conditions. CONCLUSIONS: The SCWI instrument allows for the identification of different safety climates in groups that comprise the same furniture company and it seems to reflect those groups’ safety conditions. The study also demonstrates the need for a multilevel analysis of the studied instrument.
Resumo:
Considering that vernacular architecture may bear important lessons on hazard mitigation and that well-constructed examples showing traditional seismic resistant features can present far less vulnerability than expected, this study aims at understanding the resisting mechanisms and seismic behavior of vernacular buildings through detailed finite element modeling and nonlinear static (pushover) analysis. This paper focuses specifically on a type of vernacular rammed earth constructions found in the Portuguese region of Alentejo. Several rammed earth constructions found in the region were selected and studied in terms of dimensions, architectural layout, structural solutions, construction materials and detailing and, as a result, a reference model was built, which intends to be a simplified representative example of these constructions, gathering the most common characteristics. Different parameters that may affect the seismic response of this type of vernacular constructions have been identified and a numerical parametric study was defined aiming at evaluating and quantifying their influence in the seismic behavior of this type of vernacular buildings. This paper is part of an ongoing research which includes the development of a simplified methodology for assessing the seismic vulnerability of vernacular buildings, based on vulnerability index evaluation methods.
Resumo:
This paper presents the numerical seismic analysis of isolated vernacular buildings characteristic of the Alentejo region, which is considered a medium seismic hazard region in Portugal.A representative isolated building was selected from a database, and a geometric model was defined for the numerical pushover analysis. Subsequently, a parametric analysis was carried out to assess the influence of distinct parameters on the seismic behaviour of such buildings.
Resumo:
Information technologies changed the way of how the health organizations work, contributing to their effectiveness, efficiency and sustainability. Hospital Information Systems (HIS) are emerging on all of health institutions, helping health professionals and patients. However, HIS are not always implemented and used in the best way, leading to low levels of benefits and acceptance by users of these systems. In order to mitigate this problem, it is essential to take measures able to ensure if the HIS and their interfaces are designed in a simple and interactive way. With this in mind, a study to measure the user satisfaction and their opinion was made. It was applied the Technology Acceptance Model (TAM) on a HIS implemented on various hospital centers (AIDA), being used the Pathologic Anatomy Service. The study identified weakness and strengths features of AIDA and it pointed some solutions to improve the medical record.
Resumo:
Kidney renal failure means that one’s kidney have unexpectedlystoppedfunctioning,i.e.,oncechronicdiseaseis exposed, the presence or degree of kidney dysfunction and its progression must be assessed, and the underlying syndrome has to be diagnosed. Although the patient’s history and physical examination may denote good practice, some key information has to be obtained from valuation of the glomerular filtration rate, and the analysis of serum biomarkers. Indeed, chronic kidney sickness depicts anomalous kidney function and/or its makeup, i.e., there is evidence that treatment may avoid or delay its progression, either by reducing and prevent the development of some associated complications, namely hypertension, obesity, diabetes mellitus, and cardiovascular complications. Acute kidney injury appears abruptly, with a rapiddeteriorationoftherenalfunction,butisoftenreversible if it is recognized early and treated promptly. In both situations, i.e., acute kidney injury and chronic kidney disease, an early intervention can significantly improve the prognosis. The assessment of these pathologies is therefore mandatory, although it is hard to do it with traditional methodologies and existing tools for problem solving. Hence, in this work, we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures based on Logic Programming, that will allow onetoconsiderincomplete,unknown,and evencontradictory information, complemented with an approach to computing centered on Artificial Neural Networks, in order to weigh the Degree-of-Confidence that one has on such a happening. The present study involved 558 patients with an age average of 51.7 years and the chronic kidney disease was observed in 175 cases. The dataset comprise twenty four variables, grouped into five main categories. The proposed model showed a good performance in the diagnosis of chronic kidney disease, since the sensitivity and the specificity exhibited values range between 93.1 and 94.9 and 91.9–94.2 %, respectively.
Resumo:
This paper deals with a computing simulation for an offshore wind energy system taking into account the influence of the marine waves action throughout the floating platform. The wind energy system has a variable-speed turbine equipped with a permanent magnet synchronous generator and a full-power five level converter, injecting energy into the electric grid through a high voltage alternate current link. A reduction on the unbalance of the voltage in the DC-link capacitors of the five-level converter is proposed by a strategic selection of the output voltage vectors. The model for the drive train of the wind energy system is a two mass model, including the dynamics of the floating platform. A case study is presented and the assessment of the quality of the energy injected into the electric grid is discussed.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.