5 resultados para GROWTH-CONTROL

em Universidade do Minho


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlorine is the most commonly used agent for general disinfection, particularly for microbial growth control in drinking water distribution systems. The goals of this study were to understand the effects of chlorine, as sodium hypochlorite (NaOCl), on bacterial membrane physicochemical properties (surface charge, surface tension and hydrophobicity) and on motility of two emerging pathogens isolated from drinking water, Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. The effects of NaOCl on the control of single and dual-species monolayer adhered bacteria (2 h incubation) and biofilms (24 h incubation) was also assessed. NaOCl caused significant changes on the surface hydrophobicity and motility of A. calcoaceticus, but not of S. maltophilia. Planktonic and sessile S. maltophilia were significantly more resistant to NaOCl than A. calcoaceticus. Monolayer adhered co-cultures of A. calcoaceticus-S. maltophilia were more resilient than the single species. Oppositely, dual species biofilms were more susceptible to NaOCl than their single species counterparts. In general, biofilm removal and killing demonstrated to be distinct phenomena: total bacterial viability reduction was achieved even if NaOCl at the higher concentrations had a reduced removal efficacy, allowing biofilm reseed. In conclusion, understanding the antimicrobial susceptibility of microorganisms to NaOCl can contribute to the design of effective biofilm control strategies targeting key microorganisms, such as S. maltophilia, and guarantying safe and high-quality drinking water. Moreover, the results reinforce that biofilms should be regarded as chronic contaminants of drinking water distribution systems and accurate methods are needed to quantify their presence as well as strategies complementary/alternative to NaOCl are required to effectively control the microbiological quality of drinking water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioquímica (área de especialização em Biomedicina)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sirtuins (Sirts) regulate several cellular mechanisms through deacetylation of several transcription factors and enzymes. Recently, Sirt2 was shown to prevent the development of inflammatory processes and its expression favors acute Listeria monocytogenes infection. The impact of this molecule in the context of chronic infections remains unknown. We found that specific Sirt2 deletion in the myeloid lineage transiently increased Mycobacterium tuberculosis load in the lungs and liver of conditional mice. Sirt2 did not affect long-term infection since no significant differences were observed in the bacterial burden at days 60 and 120 post-infection. The initial increase in M. tuberculosis growth was not due to differences in inflammatory cell infiltrates in the lung, myeloid or CD4+ T cells. The transcription levels of IFN-?, IL-17, TNF, IL-6 and NOS2 were also not affected in the lungs by Sirt2-myeloid specific deletion. Overall, our results demonstrate that Sirt2 expression has a transitory effect in M. tuberculosis infection. Thus, modulation of Sirt2 activity in vivo is not expected to affect chronic infection with M. tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado em Applied Biochemistry (área de especialização em Biomedicine)