25 resultados para Functional validation
em Universidade do Minho
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
This paper presents and discusses the results of the serviciability and use condition tests carried on an innovative solution for partitions, designated AdjustMembrane developed within a research project. The proposed system is a modular non-loadbearing wall, tensioned between the pavements and ceiling slabs, which are used as anchoring elements. It allows several advantages, related with the weight reduction to achieve a good sustainable performance, such as the reduction of construction costs, energy, and materials, and it is easy to recycle and to reuse, allowing self-construction. Apart from a general presentation of the partition technology, this paper presents and discusses the results of experimental tests carried out. From the results obtained, it is possible to conclude that the solution fulfils the requirements for this typology of wall in terms of resistance to horizontal loads induced by soft and hard body impacts.
Resumo:
IP networks are currently the major communication infrastructure used by an increasing number of applications and heterogeneous services, including voice services. In this context, the Session Initiation Protocol (SIP) is a signaling protocol widely used for controlling multimedia communication sessions such as voice or video calls over IP networks, thus performing vital functions in an extensive set of public and enter- prise solutions. However, the SIP protocol dissemination also entails some challenges, such as the complexity associated with the testing/validation processes of IMS/SIP networks. As a consequence, manual IMS/SIP testing solutions are inherently costly and time consuming tasks, being crucial to develop automated approaches in this specific area. In this perspective, this article presents an experimental approach for automated testing/validation of SIP scenarios in IMS networks. For that purpose, an automation framework is proposed allowing to replicate the configuration of SIP equipment from the pro- duction network and submit such equipment to a battery of tests in the testing network. The proposed solution allows to drastically reduce the test and validation times when compared with traditional manual approaches, also allowing to enhance testing reliability and coverage. The automation framework comprises of some freely available tools which are conveniently integrated with other specific modules implemented within the context of this work. In order to illustrate the advantages of the proposed automated framework, a real case study taken from a PT Inovação customer is presented comparing the time required to perform a manual SIP testing approach with the one time required when using the proposed auto- mated framework. The presented results clearly corroborate the advantages of using the presented framework.
Resumo:
The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.
Resumo:
Noise affects people in very different aspects and in almost every aspect of our daily life. The most prominent impact of noise exposure is hearing loss. However, it can also impair people at their work settings due to other effects rather than hearing loss. Older works tend to be more susceptible to noise exposure effects at work, firstly because most of them already have some ‘natural’ hearing loss, as a results of the ageing process, and secondly because they also tend to be more susceptible at an psychological level. The current study is an attempt to describe the potential problem and to make a survey to identify the available active noise cancelation systems, as well as to specific the main requirements of this type of systems to be applied in such contexts. Several aspects of characteristics of the ANC systems were identified and are presented in this study. From the obtained results it was possible to have a clearer idea about the potential of this technology, and to confirm that this type of solution can be extremely important as a component of an active ageing program, as the preservation of hearing will also impact on the social life of the exposed workers.
Resumo:
PhD Thesis in Bioengineering
Resumo:
Specific tissues, such as cartilage undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation - amplitude and frequency - to three dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Resumo:
The deep brine pools of the Red Sea comprise extreme, inhospitable habitats yet house microbial communities that potentially may fuel adjacent fauna. We here describe a novel bivalve from a deep-sea (1525 m) brine pool in the Red Sea, where conditions of high salinity, lowered pH, partial anoxia and high temperatures are prevalent. Remotely operated vehicle (ROV) footage showed that the bivalves were present in a narrow (20 cm) band along the rim of the brine pool, suggesting that it is not only tolerant of such extreme conditions but is also limited to them. The bivalve is a member of the Corbulidae and named Apachecorbula muriatica gen. et sp. nov. The shell is atypical of the family in being modioliform and thin. The semi-infaunal habit is seen in ROV images and reflected in the anatomy by the lack of siphons. The ctenidia are large and typical of a suspension feeding bivalve, but the absence of guard cilia and the greatly reduced labial palps suggest that it is non-selective as a response to low food availability. It is proposed that the low body mass observed is a consequence of the extreme habitat and low food availability. It is postulated that the observed morphology of Apachecorbula is a result of paedomorphosis driven by the effects of the extreme environment on growth but is in part mitigated by the absence of high predation pressures.
Resumo:
Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.
Resumo:
Our objective was to validate a new device dedicated to measure the light disturbances surrounding bright sources of light under different sources of potential variability. Twenty subjects were involved in the study. Light distortion was measured using an experimental prototype (light distortion analyzer, CEORLab, University of Minho, Portugal) comprising twenty-four LED arrays panel at 2 m. Sources of variability included: intrasession and intersession repeated measures, pupil size (3 versus 6 mm), defocus (þ0.50) correction for the working distance, angular resolution (15 deg versus 30 deg), temporal stimuli presentation, and pupil size. Size, shape, location, and irregularity parameters have been obtained. At a low speed of presentation of the stimuli, changes in angular resolution did not have an effect on the results of the parameters measured. Results did not change with pupil size. Intensity of the central glare source significantly influenced the outcomes. Examination time was reduced by 30% when a 30 deg angular resolution was explored instead of 15 deg. Measurements were fast and repeatable under the same experimental conditions. Size and shape parameters showed the highest consistency, whereas location and irregularity parameters showed lower consistency. The system was sensitive to changes in the intensity of the central glare source but not to pupil changes in this sample of healthy subjects.
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
NIPE - WP 02/2016
Resumo:
A newly developed strain rate dependent anisotropic continuum model is proposed for impact and blast applications in masonry. The present model adopted the usual approach of considering different yield criteria in tension and compression. The analysis of unreinforced block work masonry walls subjected to impact is carried out to validate the capability of the model. Comparison of the numerical predictions and test data revealed good agreement. Next, a parametric study is conducted to evaluate the influence of the tensile strengths along the three orthogonal directions and of the wall thickness on the global behavior of masonry walls.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Comunicação oral convidada - IL4