40 resultados para Fatores de Competitividade
em Universidade do Minho
Resumo:
This work presents a model and a heuristic to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving problems with one vehicle was presented, and this heuristic provides good results in terms of accuracy and computation time.
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the paper. The authors would like to thank Dr. Elaine DeBock for reviewing the manuscript.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
A colocação dos professores no ensino secundário em Portugal é efetuada sobre a responsabilidade do Ministério da Educação e Ciência, que é quem define as regras do funcionamento do sistema, ou seja é um sistema centralizado. Esse sistema é alvo de críticas por parte dos seus intervenientes sobretudo dos próprios professores. Este artigo tem como objetivo efetuar uma revisão sistemática e uma meta análise de como são efetuadas as colocações de professores em Portugal, bem como noutros países europeus
Resumo:
O sistema de colocação dos professores do ensino secundário em Portugal é um sistema centralizado, gerido pelo governo, mais precisamente pelo Ministério da Educação e Ciência. É um sistema que todos os anos apresenta problemas e, por esse motivo, é alvo de críticas por parte dos seus intervenientes, sobretudo pelos professores. Este artigo pretende identificar esses problemas, para isso efetuou-se uma revisão sistemática e uma meta análise de como é efetuada a colocação de professores em Portugal. Pretendeu-se ainda perceber e descrever como este sistema funciona na União Europeia. Para se encontrar soluções de melhoria para o sistema de colocação de professores efetuaram-se entrevistas a dirigentes escolares. Finalmente, a partir das soluções encontradas em países da União Europeia e das soluções oriundas das opiniões dos dirigentes escolares, são apresentados um conjunto de requisitos que o sistema de colocação de professores deve ter em atenção, de forma a evitar os problemas identificados.
Resumo:
Candida parapsilosis is nowadays an emerging opportunistic pathogen and its increasing incidence is part related to the capacity to produce biofilm. In addition, one of the most important C. parapsilosis pathogenic risk factors includes the organisms\textquoteright selective growth capabilities in hyper alimentation solutions. Thus, in this study, we investigated the role of glucose in C. parapsilosis biofilm modulation, by studying biofilm formation, matrix composition and structure. Moreover, the expression of biofilm-related genes (BCR1, FKS1 and OLE1) were analyzed in the presence of different glucose percentages. The results demonstrated the importance of glucose in the modulation of C. parapsilosis biofilm. The concentration of glucose had direct implications on the C. parapsilosis transition of yeast cells to pseudohyphae. Additionally, it was demonstrated that biofilm related genes BCR1, FKS1 and OLE1 are involved in biofilm modulation by glucose. The mechanism by which glucose enhances biofilm formation is not fully understood, however with this study we were able to demonstrate that C. parapsilosis respond to stress conditions caused by elevated levels of glucose by up-regulating genes related to biofilm formation (BCR1, FKS1 and OLE1).
Resumo:
Specific tissues, such as cartilage undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation - amplitude and frequency - to three dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Resumo:
The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.
Connecting free volume with shape memory properties in noncytotoxic gamma-irradiated polycyclooctene
Resumo:
The free volume holes of a shape memory polymer have been analysed considering that the empty space between molecules is necessary for the molecular motion, and the shape memory response is based on polymer segments acting as molecular switches through variable flexibility with temperature or other stimuli. Therefore, thermomechanical analysis (TMA) and positron annihilation lifetime spectroscopy (PALS) have been applied to analyse shape recovery and free volume hole sizes in gamma irradiated polycyclooctene (PCO) samples, as a non-cytotoxic alternative to more conventional PCO crosslinked via peroxide for future applications in medicine. Thus, a first approach relating structure, free volume holes and shape memory properties in gamma irradiated PCO is presented. The results suggest that free volume holes caused by gamma irradiation in PCO samples facilitate the recovery process by improving movement of polymer chains and open t possibilities for the design and control of the macroscopic response.
Resumo:
Thermoplastic elastomers based on a triblock copolymer styrene-butadiene-styrene (SBS) with different butadiene/styrene ratios, block structure and carbon nanotube (CNT) content were submitted to accelerated weathering in a Xenontest set up, in order to evaluate their stability to UV ageing. It was concluded that ageing mainly depends on butadiene/styrene ratio and block structure, with radial block structures exhibiting a faster ageing than linear block structures. Moreover, the presence of carbon nanotubes in the SBS copolymer slows down the ageing of the copolymer. The evaluation of the influence of ageing on the mechanical and electrical properties demonstrates that the mechanical degradation is higher for the C401 sample, which is the SBS sample with the largest butadiene content and a radial block structure. On the other hand, a copolymer derivate from SBS, the styrene-ethylene/butadiene-styrene (SEBS) sample, retains a maximum deformation of ~1000% after 80 h of accelerated ageing. The hydrophobicity of the samples decreases with increasing ageing time, the effect being larger for the samples with higher butadiene content. It is also verified that cytotoxicity increases with increasing UV ageing with the exception of SEBS, which remains not cytotoxic up to 80 h of accelerated ageing time, demonstrating its potential for applications involving exposition to environmental conditions.
Resumo:
Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.