6 resultados para FINITE TEMPERATURE FIELD THEORY
em Universidade do Minho
Resumo:
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.
Resumo:
A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott– Hubbard phase. The Mott–Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the sin- gularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.
Resumo:
Whether at the zero spin density m = 0 and finite temperatures T > 0 the spin stiffness of the spin-1/2 XXX chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m = 0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L → ∞, for any finite, nonzero temperature, which implies the absence of ballistic transport for T > 0 for m = 0. Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999)] leads to the exact stiffness values at finite temperature T > 0 for models whose stiffness is finite at T = 0, similar to the spin stiffness of the spin-1/2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.
Resumo:
The production of a W boson decaying to eν or μν in association with a W or Z boson decaying to two jets is studied using 4.6 fb−1 of proton--proton collision data at s√=7 TeV recorded with the ATLAS detector at the LHC. The combined WW+WZ cross section is measured with a significance of 3.4σ and is found to be 68±7 (stat.)±19 (syst.) pb, in agreement with the Standard Model expectation of 61.1±2.2 pb. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.
Resumo:
A search for a massive W′ gauge boson is performed with the ATLAS detector at the LHC in pp collisions at a centre-of-mass energy of s√ = 8 TeV, corresponding to 20.3 fb−1 of integrated luminosity. This analysis is done in the W′→tb→qqbb mode for W′ masses above 1.5 TeV, where the W′ decay products are highly boosted. Novel jet substructure techniques are used to identify jets from high-momentum top quarks to ensure high sensitivity, independent of W′ mass, up to 3 TeV; b-tagging is also used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95% confidence level are set on the W′→tb cross section times branching ratio ranging from 0.16 pb to 0.33 pb for left-handed W′ bosons, and ranging from 0.10 pb to 0.21 pb for W′ bosons with purely right-handed couplings. Upper limits at 95% confidence level are set on the W′-boson coupling to tb as a function of the W′ mass using an effective field theory approach, which is independent of details of particular models predicting a W′ boson.