15 resultados para Evaluation model
em Universidade do Minho
Resumo:
Accessibility is nowadays an important issue for the development of cities. It is seen as a priority in order toguarantee equal access to fundamental rights, to improve the quality of life of citizens and to ensure that everyone, regardless of age, mobility or ability, have equal access to all the resources and benefits cities have to offer. Consequently, factors closely related to the accessibility have gained a higher relevance for identifying and assessing the location of urban facilities. The main goal of the paper is to present an accessibility evaluation model applied in Santarém, in Brazil, a city located midway between the larger cities of Belem and Manaus. The research instruments, sampling method and data analysis proposed for mapping urban accessibility are described. Daily activities were used to identify and group key destinations. The model was implemented within a geographic information system and integrates the individualâ s perspective through the definition of each key destination weight, reflecting their significance for daily activities in the urban area. Accessibility to key destinations was mapped over 24 districts of the city of Santarém. The results of this model application can support city administration decision-making for new investments in order to improve urban quality of life.
Resumo:
Dissertação de mestrado em Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado integrado in Civil Engineering
Resumo:
Dissertação de mestrado em Molecular Genetics
Resumo:
A conventional method for seismic strengthening of masonry walls is externally application of reinforced concrete layer (shotcrete). However, due to the lack of analytical and experimental information on the behavior of strengthened walls, the design procedures are usually followed based on the empirical relations. Using these design procedures have resulted in massive strengthening details in retrofitting projects. This paper presents a computational framework for nonlinear analysis of strengthened masonry walls and its versatility has been verified by comparing the numerical and experimental results. Based on the developed numerical model and available experimental information, design relations and failure modes are proposed for strengthened walls in accordance with the ASCE 41 standard. Finally, a sample masonry structure has been strengthened using the proposed and available conventional methods. It has been shown that using the proposed method results in lower strengthening details and appropriate (ductile) failure modes
Resumo:
Fiber Reinforced Polymers (FRPs) have been extensively used for externally bonded reinforcement of masonry structures during the last years. Available information shows that FRPs can significantly improve the seismic performance of masonry elements without altering their structural mass. However, the durability and long-term performance of the strengthened elements are not clearly known yet. Recent experimental results show that environmental conditions can lead to degradation of the bond between FRP and masonry and FRP delaminations. But the effect of these local degradation mechanisms on the global structural response is not studied yet. This paper is therefore aimed at numerically investigating the effect of environmental degradation on the global performance of strengthened masonry walls. The nonlinear behavior of masonry walls strengthened with FRP composites is initially simulated with the aim of a FE package. The adopted numerical modeling strategy is verified by comparison of numerical and experimental results. The model, once validated, is used for investigating the effect of materials and bond degradation on the global behavior and failure modes of strengthened walls. The effect of strengthening scheme on the long-term performance of strengthened walls is also investigated. The degradation data are taken from experimental tests previously performed by the authors. The numerical results show that the effect of local material degradation on the global response of strengthened walls depends on the strengthening schemes, and severity of the environmental conditions. Moreover, environmental induced degradations and FRP delaminations can lead to change of expected failure modes in the strengthened elements. These observations, that are usually neglected at the design stage, can be critical in the long-term performance of strengthened structures.
Resumo:
Considering that vernacular architecture may bear important lessons on hazard mitigation and that well-constructed examples showing traditional seismic resistant features can present far less vulnerability than expected, this study aims at understanding the resisting mechanisms and seismic behavior of vernacular buildings through detailed finite element modeling and nonlinear static (pushover) analysis. This paper focuses specifically on a type of vernacular rammed earth constructions found in the Portuguese region of Alentejo. Several rammed earth constructions found in the region were selected and studied in terms of dimensions, architectural layout, structural solutions, construction materials and detailing and, as a result, a reference model was built, which intends to be a simplified representative example of these constructions, gathering the most common characteristics. Different parameters that may affect the seismic response of this type of vernacular constructions have been identified and a numerical parametric study was defined aiming at evaluating and quantifying their influence in the seismic behavior of this type of vernacular buildings. This paper is part of an ongoing research which includes the development of a simplified methodology for assessing the seismic vulnerability of vernacular buildings, based on vulnerability index evaluation methods.
Resumo:
Doctoral Thesis for PhD degree in Industrial and Systems Engineering
Resumo:
Kidney renal failure means that one’s kidney have unexpectedly stopped functioning, i.e., once chronic disease is exposed, the presence or degree of kidney dysfunction and its progression must be assessed, and the underlying syndrome has to be diagnosed. Although the patient’s history and physical examination may denote good practice, some key information has to be obtained from valuation of the glomerular filtration rate, and the analysis of serum biomarkers. Indeed, chronic kidney sickness depicts anomalous kidney function and/or its makeup, i.e., there is evidence that treatment may avoid or delay its progression, either by reducing and prevent the development of some associated complications, namely hypertension, obesity, diabetes mellitus, and cardiovascular complications. Acute kidney injury appears abruptly, with a rapid deterioration of the renal function, but is often reversible if it is recognized early and treated promptly. In both situations, i.e., acute kidney injury and chronic kidney disease, an early intervention can significantly improve the prognosis.The assessment of these pathologies is therefore mandatory, although it is hard to do it with traditional methodologies and existing tools for problem solving. Hence, in this work, we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures based on Logic Programming, that will allow one to consider incomplete, unknown, and even contradictory information, complemented with an approach to computing centered on Artificial Neural Networks, in order to weigh the Degree-of-Confidence that one has on such a happening. The present study involved 558 patients with an age average of 51.7 years and the chronic kidney disease was observed in 175 cases. The dataset comprise twenty four variables, grouped into five main categories. The proposed model showed a good performance in the diagnosis of chronic kidney disease, since the sensitivity and the specificity exhibited values range between 93.1 and 94.9 and 91.9–94.2 %, respectively.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
Dissertação de mestrado em Genética Molecular