22 resultados para Emulators (Computer programs)
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Relatório de estágio de mestrado em Ensino de Informática
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.
Resumo:
Forming suitable learning groups is one of the factors that determine the efficiency of collaborative learning activities. However, only a few studies were carried out to address this problem in the mobile learning environments. In this paper, we propose a new approach for an automatic, customized, and dynamic group formation in Mobile Computer Supported Collaborative Learning (MCSCL) contexts. The proposed solution is based on the combination of three types of grouping criteria: learner’s personal characteristics, learner’s behaviours, and context information. The instructors can freely select the type, the number, and the weight of grouping criteria, together with other settings such as the number, the size, and the type of learning groups (homogeneous or heterogeneous). Apart from a grouping mechanism, the proposed approach represents a flexible tool to control each learner, and to manage the learning processes from the beginning to the end of collaborative learning activities. In order to evaluate the quality of the implemented group formation algorithm, we compare its Average Intra-cluster Distance (AID) with the one of a random group formation method. The results show a higher effectiveness of the proposed algorithm in forming homogenous and heterogeneous groups compared to the random method.
Resumo:
The regular use of the computer in the office contributed to the appearance of many risk factors related with work-related musculoskeletal disorders (WRMSD) such as maintaining static sitting postures for long time and awkward postures of the head, neck and upper limbs, leading to increased muscle activity in the cervical spine and shoulders. The objective of this study was to evaluate the presence of risk factors for WRMSD in an office using the Rapid Assessment Office Strain method (ROSA). Based on the results of this ergonomic evaluation, an occupational gym program was designed and implemented. Thirty-eight workplaces were evaluated using the observation of the tasks and pictures records in order to characterize those tasks in more detail. The ROSA tool was applied by an observer, who selected the appropriate score based on the worker's posture as well as the time spent in each posture. Scores were recorded for the sections of the method, specifically Chair, Monitor and Mouse and Keyboard and Telephone. The scores were recorded in a sheet developed for the method. The mean ROSA final score was 3.61 ± 0.64, for Chair section was 3.45 ± 0.55, to Monitor and Telephone section was 3.11 ± 0.61, and to Mouse and Keyboard section was 2.11 ± 0.31. The results led to understand that the analyzed tasks represent situations of risk of discomfort and, according to the methods guidelines, further research and modifications of the workplace may be necessary. It should be emphasized that these scores may not be related to the poor available equipment but with the need to optimize their use by the workers. It was noticed also that the interaction of workers with the tasks and the adopted sitting posture at the computer throughout the day have effects at a muscular level, essentially for the cervical area and shoulders. ROSA tool is an useful and easy method to assess several risk factors associated with WRMSD, also allowing the design of specific occupational gym programs.
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Relatório de atividade profissional de mestrado em Direito Judiciário
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Resumo:
Tese de Doutoramento em Engenharia de Eletrónica e de Computadores
Resumo:
In the trend towards tolerating hardware unreliability, accuracy is exchanged for cost savings. Running on less reliable machines, functionally correct code becomes risky and one needs to know how risk propagates so as to mitigate it. Risk estimation, however, seems to live outside the average programmer’s technical competence and core practice. In this paper we propose that program design by source-to-source transformation be risk-aware in the sense of making probabilistic faults visible and supporting equational reasoning on the probabilistic behaviour of programs caused by faults. This reasoning is carried out in a linear algebra extension to the standard, `a la Bird-Moor algebra of programming. This paper studies, in particular, the propagation of faults across standard program transformation techniques known as tupling and fusion, enabling the fault of the whole to be expressed in terms of the faults of its parts.
Resumo:
Abstract Dataflow programs are widely used. Each program is a directed graph where nodes are computations and edges indicate the flow of data. In prior work, we reverse-engineered legacy dataflow programs by deriving their optimized implementations from a simple specification graph using graph transformations called refinements and optimizations. In MDE-speak, our derivations were PIM-to-PSM mappings. In this paper, we show how extensions complement refinements, optimizations, and PIM-to-PSM derivations to make the process of reverse engineering complex legacy dataflow programs tractable. We explain how optional functionality in transformations can be encoded, thereby enabling us to encode product lines of transformations as well as product lines of dataflow programs. We describe the implementation of extensions in the ReFlO tool and present two non-trivial case studies as evidence of our work’s generality