9 resultados para Electrophoresis of LPS
em Universidade do Minho
Resumo:
BACKGROUND: Lean Production Systems (LPS) have become very popular among manufacturing industries, services and large commercial areas. A LPS must develop and consider a set of work features to bring compatibility with workplace ergonomics, namely at a muscular, cognitive and emotional demands level. OBJECTIVE: Identify the most relevant impacts of the adoption of LPS from the ergonomics point of view and summarizes some possible drawbacks for workplace ergonomics due to a flawed application of the LPS. The impacts identified are focused in four dimensions: work pace, intensity and load; worker motivation, satisfaction and stress; autonomy and participation; and health outcome. This paper also discusses the influence that the work organization model has on workplace ergonomics and on the waste elimination previewed by LPS. METHODS: Literature review focused LPS and its impact on occupational ergonomics conditions, as well as on the Health and Safety of workers. The main focus of this research is on LPS implementations in industrial environments and mainly in manufacturing industry workplaces. This is followed by a discussion including the authors’ experience (and previous research). RESULTS: From the reviewed literature it seems that there is no consensus on how Lean principles affect the workplace ergonomics since most authors found positive (advantages) and negative (disadvantages) impacts. CONCLUSIONS: The negative impacts or disadvantages of LPS implementations reviewed may result from the misunderstanding of the Lean principles. Possibly, they also happen due to partial Lean implementations (when only one or two tools were implemented) that may be effective in a specific work context but not suitable to all possible situations as the principles of LPS should not lead, by definition, to any of the reported drawbacks in terms of workplace ergonomics.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
The use of chemical analysis of microbial components, including proteins, became an important achievement in the 80’s of the last century to the microbial identification. This led a more objective microbial identification scheme, called chemotaxonomy, and the analytical tools used in the field are mainly 1D/2D gel electrophoresis, spectrophotometry, high-performance liquid chromatography, gas chromatography, and combined gas chromatography-mass spectrometry. The Edman degradation reaction was also applied to peptides sequence giving important insights to the microbial identification. The rapid development of these techniques, in association with knowledge generated by DNA sequencing and phylogeny based on rRNA gene and housekeeping genes sequences, boosted the microbial identification to an unparalleled scale. The recent results of mass spectrometry (MS), like Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF), for rapid and reliable microbial identification showed considerable promise. In addition, the technique is rapid, reliable and inexpensive in terms of labour and consumables when compared with other biological techniques. At present, MALDI-TOF MS adds an additional step for polyphasic identification which is essential when there is a paucity of characters or high DNA homologies for delimiting very close related species. The full impact of this approach is now being appreciated when more diverse species are studied in detail and successfully identified. However, even with the best polyphasic system, identification of some taxa remains time-consuming and determining what represents a species remains subjective. The possibilities opened with new and even more robust mass spectrometers combined with sound and reliable databases allow not only the microbial identification based on the proteome fingerprinting but also include de novo specific proteins sequencing as additional step. These approaches are pushing the boundaries in the microbial identification field.
Resumo:
The effects of dietary short chain fructooligosaccharides (scFOS) incorporation on hematology, fish immune status, gut microbiota composition, digestive enzymes activities, and gut morphology, was evaluated in gilthead sea bream (Sparus aurata) juveniles reared at 18 °C and 25 °C. For that purpose, fish with 32 g were fed diets including 0, 0.1, 0.25 and 0.5% scFOS during 8 weeks. Overall, scFOS had only minor effects on gilthead sea bream immune status. Lymphocytes decreased in fish fed the 0.1% scFOS diet. Fish fed the 0.5% scFOS diet presented increased nitric oxide (NO) production, while total immunoglobulins (Ig) dropped in those fish, but only in the ones reared at 25 °C. Red blood cells, hemoglobin, bactericidal activity and NO were higher at 25 °C, whereas total white blood cells, circulating thrombocytes, monocytes and neutrophils were higher at 18 °C. In fish fed scFOS, lymphocytes were higher at 18 °C. Total Ig were also higher at 18 °C but only in fish fed 0.1% and 0.5% scFOS diets. No differences in gut bacterial profiles were detected by PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) between dietary treatments. However, group's similarity was higher at 25 °C. Digestive enzymes activities were higher at 25 °C but were unaffected by prebiotics incorporation. Gut morphology was also unaffected by dietary prebiotic incorporation. Overall, gut microbiota composition, digestive enzymes activities and immunity parameters were affected by rearing temperature whereas dietary scFOS incorporation had only minor effects on these parameters. In conclusion, at the tested levels scFOS does not seem worthy of including it in gilthead sea bream juveniles diets.
Resumo:
We assessed aquatic hyphomycete diversity in autumn and spring on oak leaves decomposing in five streams along a gradient of eutrophication in the Northwest of Portugal. Diversity was assessed through microscopy-based (identification by spore morphology) and DNA-based techniques (Denaturing Gradient Gel Electrophoresis and 454 pyrosequencing). Pyrosequencing revealed five times greater diversity than DGGE. About 21% of all aquatic hyphomycete species were exclusively detected by pyrosequencing and 26% exclusively by spore identification. In some streams, more than half of the recorded species would have remained undetected if we had relied only on spore identification. Nevertheless, in spring aquatic hyphomycete diversity was higher based on spore identification, probably because many species occurring in this season are not yet connected to ITS barcodes in genetic databases. Pyrosequencing was a powerful tool for revealing aquatic hyphomycete diversity on decomposing plant litter in streams and we strongly encourage researchers to continue the effort in barcoding fungal species.
Resumo:
In the present study, the ethanolic extracts of fourteen edible mushrooms were investigated for their anti-inflammatory potential in LPS (lipopolysaccharide) activated RAW 264.7 macrophages. Furthermore the extracts were chemically characterized in terms of phenolic acids and related compounds. The identified molecules (p-hydroxybenzoic, p-coumaric and cinnamic acids) and their glucuronated and methylated derivatives obtained by chemical synthesis were also evaluated for the same bioactivity, in order to establish structure-activity relationships and to comprehend the effects of in vivo metabolism reactions in the activity of the compounds. The extracts of Pleurotus ostreatus, Macrolepiota procera, Boletus impolitus and Agaricus bisporus revealed the strongest anti-inflammatory potential (EC50 values 96 ± 1 to 190 ± 6 µg/mL, and also the highest concentration of cinnamic acid (656 to 156 µg/g), which was also the individual compound with the highest anti-inflammatory activity. The derivatives of p-coumaric acid revealed the strongest properties, specially the derivative methylated in the carboxylic group (CoA-M1) that exhibited similar activity to the one showed by dexamethaxone used as anti-inflammatory standard; by contrast, the derivatives of p-hydroxybenzoic revealed the lowest inhibition of NO production. All in all, whereas the conjugation reactions change the chemical structure of phenolic acids and may increase or decrease their activity, the glucuronated and methylated derivatives of the studied compounds are still displaying anti-inflammatory activity.
Resumo:
Hind-limb ischemia has been used in type 1 diabetic mice to evaluate treatments for peripheral arterial disease or mechanisms of vascular impairment in diabetes [1]. Vascular deficiency is not only a pathophysiological condition, but also an obvious circumstance in tissue regeneration and in tissue engineering and regenerative medicine (TERM) strategies. We performed a pilot experiment of hind-limb ischemia in streptozotocin(STZ)-induced type 1 diabetic mice to hypothesise whether diabetes influences neovascularization induced by biomaterials. The dependent variables included blood flow and markers of arteriogenesis and angiogenesis. Type 1 diabetes was induced in 8-week-old C57BL/6 mice by an i.p. injection of STZ (50 mg/kg daily for 5 days). Hind-limb ischemia was created under deep anaesthesia and the left femoral artery and vein were isolated, ligated, and excised. The contralateral hind limb served as an internal control within each mouse. Non-diabetic ischaemic mice were used as experiment controls. At the hind-limb ischemia surgical procedure, different types of biomaterials were placed in the blood vessels gap. Blood flow was estimated by Laser Doppler perfusion imager, right after surgery and then weekly. After 28 days of implantation, surrounding muscle was excised and evaluated by histological analysis for arteriogenesis and angiogenesis. The results showed that implanted biomaterials were promote faster restoration of blood flow in the ischemic limbs and improved neovascularization in the diabetic mice. Therefore, we herein demonstrate that the combined model of hind-limb ischemia in type 1 diabetes mice is suitable to evaluate the neovascularization potential of biomaterials and eventually tissue engineering constructs.
Resumo:
Dissertação de mestrado em Bioquímica (área de especialização em Biomedicina)
Resumo:
Dissertação de mestrado em Bioengenharia