15 resultados para Dye –DNA-Poly Vinyl alcohol system
em Universidade do Minho
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
Tese de Doutoramento em Ciências (Especialidade de Física)
Resumo:
Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Efficient liposome disruption inside the cells is a key for success with any type of drug delivery system. The efficacy of drug delivery is currently evaluated by direct visualization of labeled liposomes internalized by cells, not addressing objectively the release and distribution of the drug. Here, we propose a novel method to easily assess liposome disruption and drug release into the cytoplasm. We propose the encapsulation of the cationic dye Hoechst 34,580 to detect an increase in blue fluorescence due to its specific binding to negatively charged DNA. For that, the dye needs to be released inside the cell and translocated to the nucleus. The present approach correlates the intensity of detected fluorescent dye with liposome disruption and consequently assesses drug delivery within the cells.
Resumo:
Separator membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) were prepared by solvent casting technique based on its phase diagram in N,Ndimethylformamide (DMF) solvent. The microstructure of the PVDF-CTFE separator membranes depends on the initial position (temperature and concentration) of the solution in the phase diagram of the PVDF-CTFE/DMF system. A porous microstructure is achieved for PVDF-CTFE membranes with solvent evaporation temperature up to 50 ºC for a polymer/solvent relative concentration of 20 wt%. The ionic conductivity of the separator depends on the degree of porosity and electrolyte uptake, the highest room temperature value being 1.5 mS.cm-1 for the sample with 20 wt% of polymer concentration and solvent evaporation temperature at 25 ºC saturated with 1 mol L-1 lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) in propylene carbonate (PC). This PVDF-CTFE separator membrane in Li/C-LiFePO4 half-cell shows good cyclability and rate capability, showing a discharge value after 50 cycles of 92 mAh.g-1 at 2 C, which is still 55% of the theoretical value. PVDF-CTFE separators are thus excellent candidates for high-power and safety lithium-ion batteries applications.
Resumo:
Electroactive polymers are one of the most interesting class of polymers used as smart materials in various applications, such as the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties, conductivity and antibacterial characteristics, through Ag inclusions. This work reports on Ag-TiNx electrodes, deposited by d. c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), PVDF, the all-round best piezoelectric polymer.. Composition of the electrodes was assessed by microanalysis X-ray system (EDS - energy dispersive spectrometer). The XRD results revealed that the deposition conditions preserve the polymer structure and suggested the presence of crystalline fcc-TiN phase and fcc-Ag phase in samples with N2 flow above 3 sccm. According to the results obtained from SEM analysis, the coatings are homogeneous and Ag clusters were found for samples with nitrogen flow above 3 sccm. With increasing nitrogen flow, the sheet resistivity tend to be lower than the samples without nitrogen, leading also to a decrease of the piezoelectric response. It is concluded that the deposition conditions do significantly affect the piezoelectric polymer, which maintain its characteristics for sensor/actuator applications.
Resumo:
Poly(vinylidene fluoride), PVDF, films and membranes were prepared by solvent casting from dimethylformamide, DMF, by systematically varying polymer/solvent ratio and solvent evaporation temperature. The effect of the processing conditions on the morphology, degree of porosity, mechanical and thermal properties and crystalline phase of the polymer were evaluated. The obtained microstructure is explained by the Flory-Huggins theory. For the binary system, the porous membrane formation is attributed to a spinodal decomposition of the liquid-liquid phase separation. The morphological features were simulated through the correlation between the Gibbs total free energy and the Flory-Huggins theory. This correlation allowed the calculation of the PVDF/DMF phase diagram and the evolution of the microstructure in different regions of the phase diagram. Varying preparation conditions allow tailoring polymer 2 microstructure while maintaining a high degree of crystallinity and a large β crystalline phase content. Further, the membranes show adequate mechanical properties for applications in filtration or battery separator membranes.
Resumo:
Poly(vinylidene fluoride-co-chlorotrifluoroethylene), PVDF-CTFE, membranes were prepared by solven casting from dimethylformamide, DMF. The preparation conditions involved a systematic variation of polymer/solvent ratio and solvent evaporation temperature. The microstructural variations of the PVDF-CTFE membranes depend on the different regions of the PVDF-CTFE/DMF phase diagram, explained by the Flory-Huggins theory. The effect of the polymer/solvent ratio and solvent evaporation temperature on the morphology, degree of porosity, β-phase content, degree of crystallinity, mechanical, dielectric and piezoelectric properties of the PVDF-CTFE polymer were evaluated. In this binary system, the porous microstructure is attributed to a spinodal decomposition of the liquid-liquid phase separation. For a given polymer/solvent ratio, 20 wt%, and higher evaporation solvent temperature, the β-phase content is around 82% and the piezoelectric coefficient, d33, is - 4 pC/N.
Resumo:
Multiarm star polymers are attractive materials due to their unusual bulk and solution properties. They are considered analogues of dendrimers with a wide range of applications, such as drug delivery, membranes, coatings and lithography.1 The advent of controlled polymerization made possible the existence of this unique class of organic nanoparticles (ONPs).2 Two major synthetic strategies are usually employed in the preparation of star polymers, the core-first and arm-first approaches. The core-first approach involves a controlled living polymerization using a multiarm initiator core while the arm-first methodology is based in the quenching of living polymers with multifunctional coupling agent or bifunctional vinyl compounds. Herein, we present the synthesis and characterization of a new star polymer, the multiarm star poly(2-hydroxyethyl methacrylate). The tetra-armed star polymer was prepared by reversible addition fragmentation chain-transfer (RAFT) polymerization using the core-first approach. The RAFT chain-transfer agent (RAFT CTA) pentaerythritol tetrakis[2-(dodecylthiocarbonothioylthio)-2-methylpropionate] was used as multiarm initiator core were 2-hydroxyethyl methacrylate (HEMA) was polymerized using AIBN as radical initiator. Structural characterization was performed by 1H NMR and FTIR. The new polymer is able to uptake large quantities of organic solvents, forming gels. The rheological behavior of these gels was also investigated.
Resumo:
Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).
Resumo:
Poly(dimethylsiloxane) (PDMS) is an organosilicon polymer widely used in the fabrication of microfluidic systems to integrate biochips. In this study, we propose the use of an adapted PDMS mould for the creation of a miniaturized, reusable, reference electrode for in-chip electrochemical measurements. Through its integrated microfluidic system it is possible to replenish internal buffer solutions, unclog critical junctions and treat the electrode’s surface, assuring a long term reuse of the same device. Planar Ag/AgCl reference electrodes were microfabricated over a passivated p-type Silicon Wafer. The PDMS mould, containing an integrated microfluidic system, was fabricated based on patterned SU-8 mould, which includes a lateral horizontal inlet access point. Surface oxidation was used for irreversible permanent bondage between flat surfaces. The final result was planar Ag/AgCl reference electrode with integrated microfluidic that allows for electrochemical analysis in biochips
Resumo:
Dissertação de mestrado em Ecologia
Resumo:
Dissertação de mestrado em Ecologia