3 resultados para Discrete Choice Model

em Universidade do Minho


Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a renewable energy source, the use of forest biomass for electricity generation is advantageous in comparison with fossil fuels, however the activity of forest biomass power plants causes adverse impacts, affecting particularly neighbouring communities. The main objective of this study is to estimate the effects of the activity of forest biomass power plants on the welfare of two groups of stakeholders, namely local residents and the general population and we apply two stated preference methods: contingent valuation and discrete choice experiments, respectively. The former method was applied to estimate the minimum compensation residents of neighbouring communities of two forest biomass power plants in Portugal would be willing to accept. The latter method was applied among the general population to estimate their willingness to pay to avoid specific environmental impacts. The results show that the presence of the selected facilities affects individuals’ well-being. On the other hand, in the discrete choice experiments conducted among the general population all impacts considered were significant determinants of respondents’ welfare levels. The results of this study stress the importance of performing an equity analysis of the welfare effects on different groups of stakeholders from the installation of forest biomass power plants, as their effects on welfare are location and impact specific. Policy makers should take into account the views of all stakeholders either directly or indirectly involved when deciding crucial issues regarding the sitting of new forest biomass power plants, in order to achieve an efficient and equitable outcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model predictive current control applied to a proposed single-phase five-level active rectifier (FLAR). This current control strategy uses the discrete-time nature of the active rectifier to define its state in each sampling interval. Although the switching frequency is not constant, this current control strategy allows to follow the reference with low total harmonic distortion (THDF). The implementation of the active rectifier that was used to obtain the experimental results is described in detail along the paper, presenting the circuit topology, the principle of operation, the power theory, and the current control strategy. The experimental results confirm the robustness and good performance (with low current THDF and controlled output voltage) of the proposed single-phase FLAR operating with model predictive current control.