32 resultados para Diauxic shift
em Universidade do Minho
Resumo:
Purpose:This chapter addresses the economic assessment of health benefits of active transport and presents most recent valuation studies with an overview of progresses made towards the inclusion of health benefits in the cost-benefit analysis (CBA) of active transport. Methodology/approach: It is built upon the contracted study for the World Health Organization (WHO) on the economic appraisal of health benefits of walking and cycling investments at the city of Viana do Castelo, the former pilot study in Portugal for evaluating the health benefits of non-motorized transport using the WHO Health Economic Assessment Tool (HEAT). The relative risk values adopted in the HEAT for walking refer to adult population of the age group 20â 74 years and the assessment focus in on average physical activity/regular behaviour of groups of pedestrians and all-cause mortality health impacts. During the case study, it was developed and implemented a mobility survey which aimed to collect behavioural data before and after a street intervention in the historic centre. Findings: Most recent appraisal guidance of walking and cycling and health impact modelling studies reviewed confirm that further research is expected before a more comprehensive appraisal procedure can be adopted in Europe, able to integrate physical activity effects along with other health risks such as those related to road traffic injuries and exposure to air pollution. Social implications: The health benefits assessment of walking investments helped local decision-makers to progress towards sustainable mobility options in the city. Making the population aware of the potential health benefits of regular walking can encourage more people to uptake active transport as part of their daily activities. Originality/value: This study provides a useful review of the health benefits of active transport with a comprehensive analysis of valuation studies, presenting value-added information. It then reports a former assessment of the health effects of active transport in the Portuguese context (case study) using the state-of-the-art economic analysis tool (HEAT) of the World Health Organization which is believed to contribute to a paradigm shift in the transport policy and appraisal practice given the need of shaping future cities (and their citizens) for health through more investments in active transport.
Resumo:
Dissertação de mestrado em Português Língua Não Materna (PLNM) - Português Língua Estrangeira (PLE) / Português Língua Segunda (PL2)
Resumo:
This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
PhD thesis in Bioengineering
Resumo:
Tese de Doutoramento em Psicologia - Especialidade em Psicologia Experimental e Ciências Cognitivas
Resumo:
Projeto de mestrado em Políticas Comunitárias e Cooperação Territorial
Resumo:
Tese de Doutoramento em Ciências Jurídicas (área de especialização em Ciências Jurídicas - Públicas)
Resumo:
Dissertação de mestrado integrado em Psicologia
Resumo:
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Resumo:
Bacterial vaginosis (BV) is the worldwide leading vaginal disorder in women of reproductive age. BV is characterized by the replacement of beneficial lactobacilli and the augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, however, BV is also associated with other numerous anaerobes, such as Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia, Fusobacterium nucleatum and Peptoniphilus sp.. Currently, the role of G. vaginalis in the etiology of BV remains a matter of controversy. It is however known that, in BV patients, a biofilm is usually formed on the vaginal epithelium and G. vaginalis is typically the predominant species. So, the current paradigm is that the establishment of a biofilm plays a key role in the pathogenesis of BV. This review provides background on the influence of biofilm formation by G. vaginalis and other anaerobes in the polymicrobial etiology of BV, through its initial adhesion until biofilm formation and discusses the commensal and synergic interactions established between them to understand the phenotypic shift of G. vaginalis' biofilms into BV establishment.
Resumo:
In an underwater environment it is difficult to implement solutions for wireless communications. The existing technologies using electromagnetic waves or lasers are not very efficient due to the large attenuation in the aquatic environment. Ultrasound reveals a lower attenuation, and thus has been used in underwater long-distance communications. The much slower speed of acoustic propagation in water (about 1500 m/s) compared with that of electromagnetic and optical waves, is another limiting factor for efficient communication and networking. For high data-rates and real-time applications it is necessary to use frequencies in the MHz range, allowing communication distances of hundreds of meters with a delay of milliseconds. To achieve this goal, it is necessary to develop ultrasound transducers able to work at high frequencies and wideband, with suitable responses to digital modulations. This work shows how the acoustic impedance influences the performance of an ultrasonic emitter transducer when digital modulations are used and operating at frequencies between 100 kHz and 1 MHz. The study includes a Finite Element Method (FEM) and a MATLAB/Simulink simulation with an experimental validation to evaluate two types of piezoelectric materials: one based on ceramics (high acoustic impedance) with a resonance design and the other based in polymer (low acoustic impedance) designed to optimize the performance when digital modulations are used. The transducers performance for Binary Amplitude Shift Keying (BASK), On-Off Keying (OOK), Binary Phase Shift Keying (BPSK) and Binary Frequency Shift Keying (BFSK) modulations with a 1 MHz carrier at 125 kbps baud rate are compared.
Resumo:
Recently, CdTe semiconductor quantum dots (QDs) have attracted great interest due to their unique properties [1]. Their dispersion into polymeric matrices would be very for several optoelectronics applications. Despite its importance, there has been relatively little work done on charge transport in the QD polymeric films [2], which is mainly affected by their structural and morphological properties. In the present work, polymer-quantum dot nanocomposites films based on optically transparent polymers in the visible spectral range and CdTe QDs with controlled particle size and emission wavelength, were prepared via solvent casting. Photoluminescent (PL) measurements indicate different emission intensity of the nanocomposites. A blue shift of the emission peak compared to that of QDs in solution occurred, which is attributed to the QDs environment changes. The morphological and structural properties of the CdTe nanocomposites were evaluated. Since better QDs dispersion was achieved, PMMA seemed to be the most promising matrix. Electrical properties measurements indicate an ohmic behavior.
Resumo:
The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).
Resumo:
Dissertação de mestrado em Engenharia de Sistemas