44 resultados para DEPRESSION MODELS
em Universidade do Minho
Resumo:
Depression is an extremely heterogeneous disorder. Diverse molecular mechanisms have been suggested to underlie its etiology. To understand the molecular mechanisms responsible for this complex disorder, researchers have been using animal models extensively, namely mice from various genetic backgrounds and harboring distinct genetic modifications. The use of numerous mouse models has contributed to enrich our knowledge on depression. However, accumulating data also revealed that the intrinsic characteristics of each mouse strain might influence the experimental outcomes, which may justify some conflicting evidence reported in the literature. To further understand the impact of the genetic background, we performed a multimodal comparative study encompassing the most relevant parameters commonly addressed in depression, in three of the most widely used mouse strains: Balb/c, C57BL/6, and CD-1. Moreover, female mice were selected for this study taken into account the higher prevalence of depression in women and the fewer animal studies using this gender. Our results show that Balb/c mice have a more pronounced anxious-like behavior than CD-1 and C57BL/6 mice, whereas C57BL/6 animals present the strongest depressive-like trait. Furthermore, C57BL/6 mice display the highest rate of proliferating cells and brain-derived neurotrophic factor (Bdnf) expression levels in the hippocampus, while hippocampal dentate granular neurons of Balb/c mice show smaller dendritic lengths and fewer ramifications. Of notice, the expression levels of inducible nitric oxide synthase (iNos) predict 39.5% of the depressive-like behavior index, which suggests a key role of hippocampal iNOS in depression. Overall, this study reveals important interstrain differences in several behavioral dimensions and molecular and cellular parameters that should be considered when preparing and analyzing experiments addressing depression using mouse models. It further contributes to the literature by revealing the predictive value of hippocampal iNos expression levels in depressive-like behavior, irrespectively of the mouse strain.
Resumo:
Objective:Innovative moments (IMs) are moments in the therapeutic dialog that constitute exceptions toward the client's problems. These narrative markers of meaning transformation are associated with change in different models of therapy and diverse diagnoses. Our goal is to test if IMs precede symptoms change, or, on the contrary, are a mere consequence of symptomatic 15 change. Method: For this purpose, IMs and symptomatology (Outcome Questionnaire-10.2) were assessed at every session in a sample of 10 cases of narrative therapy for depression. Hierarchical linear modeling was conducted to explore whether (i) IMs in a given session predict patients' symptoms in the following session and/or (ii) symptoms in a given session predict IMs in the next session. Results: Results suggested that IMs are better predictors of symptoms than the reverse. Conclusions: These results are discussed considering the contribution of meanings and narrative processes' changes to symptomatic improvement.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Resumo:
Developing and implementing data-oriented workflows for data migration processes are complex tasks involving several problems related to the integration of data coming from different schemas. Usually, they involve very specific requirements - every process is almost unique. Having a way to abstract their representation will help us to better understand and validate them with business users, which is a crucial step for requirements validation. In this demo we present an approach that provides a way to enrich incrementally conceptual models in order to support an automatic way for producing their correspondent physical implementation. In this demo we will show how B2K (Business to Kettle) system works transforming BPMN 2.0 conceptual models into Kettle data-integration executable processes, approaching the most relevant aspects related to model design and enrichment, model to system transformation, and system execution.
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.
Resumo:
This work reports the implementation and verification of a new so lver in OpenFOAM® open source computational library, able to cope with integral viscoelastic models based on the integral upper-convected Maxwell model. The code is verified through the comparison of its predictions with analytical solutions and numerical results obtained with the differential upper-convected Maxwell model
Resumo:
This review deals with the recent developments and present status of the theoretical models for the simulation of the performance of lithium ion batteries. Preceded by a description of the main materials used for each of the components of a battery -anode, cathode and separator- and how material characteristics affect battery performance, a description of the main theoretical models describing the operation and performance of a battery are presented. The influence of the most relevant parameters of the models, such as boundary conditions, geometry and material characteristics are discussed. Finally, suggestions for future work are proposed.
Resumo:
Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
Resumo:
A significant number of psychotherapy clients remain untreated, and dropping out is one of the main reasons. Still, the literature around this subject is incoherent. The present study explores potential pre-treatment predictors of dropout in a sample of clients who took part in a clinical trial designed to test the efficacy of narrative therapy for major depressive disorder compared to cognitive-behavioral therapy. Logistic regression analysis showed that: (1) treatment assignment did not predict dropout, (2) clients taking psychiatric medication at intake were 80% less likely to drop out from therapy, compared to clients who were not taking medication, and (3) clients presenting anxious comorbidity at intake were 82% less likely to dropout compared to those clients not presenting anxious comorbidity. Results suggest that clinicians should pay attention to depressed clients who are not taking psychiatric medication or have no comorbid anxiety. More research is needed in order to understand this relationship.
Resumo:
Objective: The aim of this study is to improve the understanding of self-changes after an intervention for depression focused on implicative dilemmas, a type of cognitive conflict related to identity. As recent research has highlighted the relevance of identity-related dilemmas in clients with depression, we sought to assess the way in which clients resolve such inner conflicts after a tailored dilemma-focused intervention and how this is reflected in the clients’ self-narratives. Method: We used three instruments to observe differences between good (n = 5) and poor (n = 5) outcome cases: (i) the Repertory Grid Technique to track the resolution of dilemmas, (ii) the Change Interview to compile clients’ accounts of changes at posttreatment, and (iii) the Innovative Moments Coding System to examine the emergence of clients’ novelties at the Change Interview. Results: Groups did not differ in terms of the number and relevance of client-identified significantly helpful events. However, between-group differences were found for the resolution of dilemmas and for the proportion of high-level innovative moment (IM) types. Furthermore, a greater self-narrative reconstruction was associated with higher levels of symptom improvement. Conclusions: Good outcome cases seem to be associated with the resolution of conflicts and high-level IMs.
Resumo:
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
Resumo:
In this article, we develop a specification technique for building multiplicative time-varying GARCH models of Amado and Teräsvirta (2008, 2013). The variance is decomposed into an unconditional and a conditional component such that the unconditional variance component is allowed to evolve smoothly over time. This nonstationary component is defined as a linear combination of logistic transition functions with time as the transition variable. The appropriate number of transition functions is determined by a sequence of specification tests. For that purpose, a coherent modelling strategy based on statistical inference is presented. It is heavily dependent on Lagrange multiplier type misspecification tests. The tests are easily implemented as they are entirely based on auxiliary regressions. Finite-sample properties of the strategy and tests are examined by simulation. The modelling strategy is illustrated in practice with two real examples: an empirical application to daily exchange rate returns and another one to daily coffee futures returns.
Resumo:
Dissertação de mestrado em Bioquímica Aplicada – Biomedicina
Resumo:
Cancer is a major cause of morbidity and mortality worldwide, with a disease burden estimated to increase in the coming decades. Disease heterogeneity and limited information on cancer biology and disease mechanisms are aspects that 2D cell cultures fail to address. We review the current "state-of-the-art" in 3D Tissue Engineering (TE) models developed for and used in cancer research. Scaffold-based TE models and microfluidics, are assessed for their potential to fill the gap between 2D models and clinical application. Recent advances in combining the principles of 3D TE models and microfluidics are discussed, with a special focus on biomaterials and the most promising chip-based 3D models.
Resumo:
Programa Doutoral em Líderes para as Indústrias Tecnológicas