23 resultados para Critical Film Thickness
em Universidade do Minho
Resumo:
This paper presents a systematic study for the production of poly(vinylidene fluoride-hexafluoropropylene), P(VDF-HFP), porous films using solvent evaporation (SE) and non-solvent induced phase separation (NIPS) techniques. Parameters such as volume fraction of the copolymer solution, film thickness, time exposure to air, non-solvent and temperature of the coagulation bath were investigated on the morphology, crystallization and mechanical properties of the samples. Films with different porous morphologies including homogeneous pore sizes, macrovoids and spherulites were obtained depending on the processing conditions, which in turn affect the wettability and mechanical properties of the material. Knowing that the phase content of the films also depends on the processing conditions, this paper shows that P(VDF-HFP) films with tailored porous morphology, electroactive phase content, hydrophobicity, cristallinity and mechanical properties can be achieved for a specific application using the adequate SE and NIPS techniques conditions.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Glazing is a technique used to retard fish deterioration during storage. This work focuses on the study of distinct variables (fish temperature, coating temperature, dipping time) that affect the thickness of edible coatings (water glazing and 1.5% chitosan) applied on frozen fish. Samples of frozen Atlantic salmon (Salmo salar) at -15, -20, and -25 °C were either glazed with water at 0.5, 1.5 or 2.5 °C or coated with 1.5% chitosan solution at 2.5, 5 or 8 °C, by dipping during 10 to 60 s. For both water and chitosan coatings, lowering the salmon and coating solution temperatures resulted in an increase of coating thickness. At the same conditions, higher thickness values were obtained when using chitosan (max. thickness of 1.41±0.05 mm) compared to water (max. thickness of 0.84±0.03 mm). Freezing temperature and crystallization heat were found to be lower for 1.5% chitosan solution than for water, thus favoring phase change. Salmon temperature profiles allowed determining, for different dipping conditions, whether the salmon temperature was within food safety standards to prevent the growth of pathogenic microorganisms. The concept of safe dipping time is proposed to define how long a frozen product can be dipped into a solution without the temperature raising to a point where it can constitute a hazard.
Resumo:
The Childhood protection is a subject with high value for the society, but, the Child Abuse cases are difficult to identify. The process from suspicious to accusation is very difficult to achieve. It must configure very strong evidences. Typically, Health Care services deal with these cases from the beginning where there are evidences based on the diagnosis, but they aren’t enough to promote the accusation. Besides that, this subject it’s highly sensitive because there are legal aspects to deal with such as: the patient privacy, paternity issues, medical confidentiality, among others. We propose a Child Abuses critical knowledge monitor system model that addresses this problem. This decision support system is implemented with a multiple scientific domains: to capture of tokens from clinical documents from multiple sources; a topic model approach to identify the topics of the documents; knowledge management through the use of ontologies to support the critical knowledge sensibility concepts and relations such as: symptoms, behaviors, among other evidences in order to match with the topics inferred from the clinical documents and then alert and log when clinical evidences are present. Based on these alerts clinical personnel could analyze the situation and take the appropriate procedures.
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Over the past four decades the EU cohesion policy’s focus, objectives and content have experienced significant changes as a result of successive reforms aiming at adapting it to a Union in constant evolution. In the early stages, cohesion policy had eminently redistributive goals and it assumed an explicit spatial dimension. In the late nineties, the possibility of an extension towards Eastern European countries and the limited willingness of net contributors to increase funding led to a turning point in cohesion policy. The increased importance of economic growth and job creation in the 2000’s, within the cohesion policy’s context, has led to a misrepresentation of its essence and motivations. Cohesion was losing importance towards competitiveness and regional equity towards national efficiency. Today, cohesion policy is for many EU countries the main mean for mobilising investment in a context of budgetary constraints and credit rationing. In light of the available evidence, it is likely that the overall design and priorities of the current cohesion policy have a limited impact in terms of convergence in many EU regions, especially in the less developed regions. This paper’s main objectives are to analyse the evolution of European cohesion policy throughout its history, to present a picture of cohesion policy in the 2014-2020 programming period and to discuss the main problems associated with its design, priorities and programming model.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
PURPOSE: The aim of this work was to study the central and peripheral thickness of several contact lenses (CL) with different powers and analyze how thickness variation affects CL oxygen transmissibility. METHODS: Four daily disposable and five monthly or biweekly CL were studied. The powers of each CL were: the maximum negative power of each brand; -6.00 D; -3.00 D; zero power (-0.25 D or -0.50 D), +3.00 D and +6.00 D. Central and peripheral thicknesses were measured with an electronic thickness gauge. Each lens was measured five times (central and 3mm paracentral) and the mean value was considered. Using the values of oxygen permeability given by the manufacturers and the measured thicknesses, the variation of oxygen transmissibility with lens power was determined. RESULTS: For monthly or biweekly lenses, central thickness changed between 0.061 ± 0.002 mm and 0.243 ± 0.002 mm, and peripheral thickness varied between 0.084 ± 0.002 mm and 0.231 ± 0.015 mm. Daily disposable lenses showed central values ranging between 0.056 ± 0.0016 mm and 0.205 ± 0.002 mm and peripheral values between 0.108 ± 0.05 and 0.232 ± 0.011 mm. Oxygen transmissibility (in units) of monthly or biweekly CL ranged between 39.4 ± 0.3 and 246.0 ± 14.4 and for daily disposable lenses the values range between 9.5 ± 0.5 and 178.1 ± 5.1. CONCLUSIONS: The central and peripheral thicknesses change significantly when considering the CL power and this has a significant impact on the oxygen transmissibility. Eyecare practitioners must have this fact in account when high power plus or minus lenses are fitted or when continuous wear is considered.
Resumo:
We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.
Resumo:
Ti-Me binary intermetallic thin films based on a titanium matrix doped with increasing amounts of Me (Me = Al, Cu) were prepared by magnetron sputtering (under similar conditions), aiming their application in biomedical sensing devices. The differences observed on the composition and on the micro(structural) features of the films, attributed to changes in the discharge characteristics, were correlated with the electrical properties of the intermetallic systems (Ti-Al and Ti-Cu). For the same Me exposed areas placed on the Ti target (ranging from 0.25 cm2 to 20 cm2) the Cu content increased from 3.5 at.% to 71.7 at.% in the Ti-Cu system and the Al content, in Ti-Al films, ranged from 11 to 45 at.%. The structural characterization evidenced the formation of metastable Ti-Me intermetallic phases for Al/Ti atomic ratios above 0.20 and for Cu/Ti ratios above 0.25. For lower Me concentrations, the effect of the α-Ti(Me) structure domains the overall structure. With the increase amount of the Me into Ti structure a clear trend for amorphization was observed. For both systems it was observed a significant decrease of the electrical resistivity with increasing Me/Ti atomic ratios (higher than 0.5 for Al/Ti atomic ratio and higher than 1.3 for Cu/Ti atomic ratio). Although similar trends were observed in the resistivity evolution for both systems, the Ti-Cu films presented lower resistivity values in comparison to Ti-Al system.
Resumo:
OBJECTIVE The aim of this study was to compare the performance of the current conventional Pap smear with liquid-based cytology (LBC) preparations. STUDY DESIGN Women routinely undergoing their cytopathological and histopathological examinations at Fundação Oncocentro de São Paulo (FOSP) were recruited for LBC. Conventional smears were analyzed from women from other areas of the State of São Paulo with similar sociodemographic characteristics. RESULTS A total of 218,594 cases were analyzed, consisting of 206,999 conventional smears and 11,595 LBC. Among the conventional smears, 3.0% were of unsatisfactory preparation; conversely, unsatisfactory LBC preparations accounted for 0.3%. The ASC-H (atypical squamous cells - cannot exclude high-grade squamous intraepithelial lesion) frequency did not demonstrate any differences between the two methods. In contrast, the incidence of ASC-US (atypical squamous cells of undetermined significance) was almost twice as frequent between LBC and conventional smears, at 2.9 versus 1.6%, respectively. An equal percentage of high-grade squamous intraepithelial lesions were observed for the two methods, but not for low-grade squamous intraepithelial lesions, which were more significantly observed in LBC preparations than in conventional smears (2.2 vs. 0.7%). The index of positivity was importantly enhanced from 3.0% (conventional smears) to 5.7% (LBC). CONCLUSIONS LBC performed better than conventional smears, and we are truly confident that LBC can improve public health strategies aimed at reducing cervical lesions through prevention programs.
Resumo:
Tese de Doutoramento em Engenharia de Materiais.
Resumo:
This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg−1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians.
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores.