6 resultados para Craig Thompson
em Universidade do Minho
Resumo:
Although Brazil imported more African slaves than any other country in the Americas, knowledge of the accounting and taxation of slave-related transactions in Brazil is under-developed. We explore Portuguese-language documents showing how accounting and taxation were implicated in maintaining slavery in Brazil in the eighteenth and nineteenth centuries. The study presents examples of key documents involving slaves (such as inventory lists, rental agreements, insurance policies, and receipts) and explains how slave-related transactions were recorded and taxed. We enable important comparisons to be drawn with the accounting and taxation of slaves in the USA and British West Indies.
Resumo:
Mutations or amplification of the MET proto-oncogene are involved in the pathogenesis of several tumours, which rely on the constitutive engagement of this pathway for their growth and survival. However, MET is expressed not only by cancer cells but also by tumour-associated stromal cells, although its precise role in this compartment is not well characterized. Here we show that MET is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor (HGF). Met deletion in mouse neutrophils enhances tumour growth and metastasis. This phenotype correlates with reduced neutrophil infiltration to both the primary tumour and metastatic sites. Similarly, Met is necessary for neutrophil transudation during colitis, skin rash or peritonitis. Mechanistically, Met is induced by tumour-derived tumour necrosis factor (TNF)-a or other inflammatory stimuli in both mouse and human neutrophils. This induction is instrumental for neutrophil transmigration across an activated endothelium and for inducible nitric oxide synthase production upon HGF stimulation. Consequently, HGF/MET-dependent nitric oxide release by neutrophils promotes cancer cell killing, which abates tumour growth and metastasis. After systemic administration of a MET kinase inhibitor, we prove that the therapeutic benefit of MET targeting in cancer cells is partly countered by the pro-tumoural effect arising from MET blockade in neutrophils. Our work identifies an unprecedented role of MET in neutrophils, suggests a potential 'Achilles' heel' of MET-targeted therapies in cancer, and supports the rationale for evaluating anti-MET drugs in certain inflammatory diseases.
Resumo:
Dissertação de mestrado em Economia Monetária, Bancária e Financeira
Resumo:
The development of products from marine bioresources is gaining importance in the biotechnology sector. The global market for Marine Biotechnology products and processes was, in 2010, estimated at 2.8 billion with a cumulative annual growth rate of 510% (Børresen et al., Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Beernem: Marine Board-ESF, 2010). Marine Biotechnology has the potential to make significant contributions towards the sustainable supply of food and energy, the solution of climate change and environmental degradation issues, and the human health. Besides the creation of jobs and wealth, it will contribute to the development of a greener economy. Thus, huge expectations anticipate the global development of marine biotechnology. The marine environment represents more than 70% of the Earths surface and includes the largest ranges of temperature, light and pressure encountered by life. These diverse marine environments still remain largely unexplored, in comparison with terrestrial habitats. Notwithstanding, efforts are being done by the scientific community to widespread the knowledge on oceans microbial life. For example, the J. Craig Venter Institute, in collaboration with the University of California, San Diego (UCSD), and Scripps Institution of Oceanography have built a state-of-the-art computational resource along with software tools to catalogue and interpret microbial life in the worlds oceans. The potential application of the marine biotechnology in the bioenergy sector is wide and, certainly, will evolve far beyond the current interest in marine algae. This chapter revises the current knowledge on marine anaerobic bacteria and archaea with a role in bio-hydrogen production, syngas fermentation and bio-electrochemical processes, three examples of bioenergy production routes.
Resumo:
Haloplasmataceae is a family within the order Haloplasmatales, which currently includes one single genus and species: Haloplasma contractile. This family has unusual phenotypic features the most noticeable being a unique morphology and cellular contractility cycle and a distinct phylogenetic position between the Firmicutes and the Tenericutes (Mollicutes). Members of the Haloplasmataceae have been isolated from the upper sediments of a deep-sea anoxic brine in the Red Sea, but cultivation-independent studies have found related sequences in a wide range of biotopes including other extreme environments, contaminated soils and marine sediments, as well as intestinal samples. The isolation and description of new representatives of this family might therefore result in significant changes to the current description.
Resumo:
The family Salinisphaeraceae (Class Gammaproteobacteria, Order Salinisphaerales) comprises a single genus, Salinisphaera, and six species: S. shabanensis, S. hydrothermalis, S. dokdonensis, S. orenii, S. halophila, and S. japonica. All members of the family Salinisphaeraceae were isolated from marine/oceanic and high-salinity environments. These bacteria have coccoid or short rod morphologies and are halophilic or halotolerant. All known members of the family Salinisphaeraceae are heterotrophic, mesophilic aerobes, although S. hydrothermalis was shown to be a facultative chemolithoautotroph. Isolation and characterization of new members of the Salinisphaeraceae, as well as in-depth studies of the currently known species, will allow for a better understanding of this family.