10 resultados para Cotton yarn
em Universidade do Minho
Resumo:
Objetivo do presente trabalho foi estudar a influência dos diferentes sistemas de fios (trama, teia de base e teia da argola) no desempenho dos tecidos de felpos, no que concerne às propriedades de absorção, capilaridade e libertação de humidade. Para este estudo usaram-se quatro tipos de combinações destes sistemas de fios, para a mesma estrutura de tecidos de felpo, na teia de base utilizou-se somente fios de Tencel®, na teia de argola e da trama varou-se a composição dos fios entre fios de algodão e de Tencel®. Os resultados obtidos demonstram que quando a utilização fios de Tencel® em qualquer dos sistemas (trama ou teia da argola) favorece a capacidade de difusão de líquidos na estrutura, a utilização de fios de algodão na teia de argola favorece a capacidade de absorção.
Resumo:
A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.
Resumo:
Cutinase from Thermobifida fusca was used to esterify the hydroxyl groups of cellulose with the fatty acids from triolein. Cutinase and triolein were pre-adsorbed on cotton and the reaction proceeded in a dry state during 48 hours at 35ºC. The cutinase-catalyzed esterification of the surface of cotton fabric resulted in the linkage of the oleate groups to the glycoside units of cotton cellulose. The superficial modification was confirmed by performing ATR-FTIR on treated cotton samples and by MALDI-TOF analysis of the liquors from the treatment of the esterified cotton with a crude cellulase mixture. Modified cotton fabric also showed a significant increase of hydrophobicity. This work proposes a novel bio-based approach to obtain hydrophobic cotton. This article is protected by copyright. All rights reserved.
Resumo:
Recent advances in computation allow for the integration of design and simulation of highly interrelated systems, such as hybrids of structural membranes and bending active elements. The engaged complexities of forces and logistics can be mediated through the development of materials with project specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Enzymatic polymerization of aniline was first performed in lignosulfonate (LGS) template system. High-redox-potential catalyst laccase, isolated from Aspergillus, was used as a biocatalyst in the synthesis of conducting polyaniline/lignosulfonate (PANI-ES-LGS) complex using atmospheric oxygen as the oxidizing agent. The linear templates (LGS), also serving as the dopants, could facilitate the directional alignment of the monomer and improve the solubility of the conducting polymer. The process of the polymerization was monitored using UV-Vis spectroscopy, by which the conditions for laccase-catalyzed synthesis of PANI-ES-LGS complex were also optimized. The structure characterizations and solubility of the complex were carried out using corresponding characterization techniques respectively. The PANI-ES-LGS suspensions obtained was used as coating for cotton with a conventional padder to explore the applications of the complex. The variable optoelectronic properties of the coated cotton were confirmed by cyclic voltammetry and color strength test. The molecular weight changes of LGS treated by laccase were also studied to discuss the mechanism of laccase catalyzed aniline polymerization in LGS template system.
Resumo:
Dissertação de mestrado em Técnicas de Caraterização e Análise Química