19 resultados para Container filling
em Universidade do Minho
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Tese de Doutoramento em Engenharia Industrial e de Sistemas.
Resumo:
In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.
Resumo:
The incorporation of fly ash (FA) in cementitious matrices have been frequently used in order to make the matrix more resistant to the action of chlorides. On the other hand, it is known that Ca (OH)2 existing in the matrix is partially consumed by the pozzolanic reactions, which facilitates the advancement of carbonation. Given that the combined action between carbonation and chloride penetration is a fact little known, we speculate about the behaviour of the matrix in this context. This study investigates the influence of the presence of chlorides on the carbonation in mortars with FA. Samples with 0% and 40% replacement of cement CEM I 42.5 R for FA were molded with water/binder 0.56 and 0.52 respectively. After 90 days of curing the specimens were subjected to cycles of immersion/drying for 56 days. Half of the samples was subjected to the following cycle: two days in a solution containing NaCl (concentration equal to 3.5 %); 12 days in the carbonation chamber (4% of CO2). The other half was: two days in water; 12 days in the carbonation chamber. Then, the development of carbonation was evaluated. The results indicate that the presence of chlorides influences the carbonation. The specimens submitted to the exclusive action of CO2 showed a greater depth of carbonation compared to that presented by the specimens subjected to combined action. This may be related to changes in properties of the matrix which may lead to further refinement of the pores and related to the presence of the salt that can lead to partial filling of the pores and the increase in moisture content.
Resumo:
In order to investigate the out-of-plane behaviour of masonry infill walls, quasi-static testing was performed on a masonry infill walls built inside a reinforced concrete frame by means of an airbag system to apply the uniform out-of-plane load to each component of the infill. The main advantage of this testing setup is that the out-of-plane loading can be applied more uniformly in the walls, contrarily to point load configuration. The test was performed under displacement control by selecting the mid-point of the infill as control point. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. The effect of the distance between the reaction frame of the airbag and the masonry infill on the effective contact area was previously analysed. Four load cells were attached to the reaction frame to measure the out-of-plane force. The effective contact area of the airbag was calculated by dividing the load measured in load cells by the pressure inside the airbag. When the distance between the reaction walls and the masonry infill wall is smaller, the effective area is closer to the nominal area of the airbag. Deformation and crack patterns of the infill confirm the formation of arching mechanism and two-way bending of the masonry infill. Until collapse of the horizontal interface between infill and upper beam in RC frame, the infill bends in two directions but the failure of that interface which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam results in the crack opening trough a well-defined path and the consequent collapse of the infill.
Resumo:
Seismic investigations of typical south European masonry infilled frames were performed by testing two reduced scale specimens: one in the in-plane direction and another in the out-ofplane direction. Information about geometry and reinforcement scheme of those structures constructed in 1980s were obtained by [1]. The specimen to be tested in the in-plane direction was constructed as double leaf masonry while the specimen for testing in the out-of-plane direction is constructed with only its exterior leaf since the recent earthquakes have highlighted the vulnerability of the external leaf of the infills in out-of-plane direction [2]. The tests were performed by applying the pre-defined values of displacements in the in-plane and out-of-plane directions in the control points. For in-plane testing it was done by hydraulic actuator and for out-of-plane testing through the application of an airbag. Input and output air in the airbag was controlled by using a software to apply a specific displacement in the control point of the infill wall. Mid-point of the infill was assumed as a control point for outof- plane testing. Deformation and crack patterns of the infill confirm the formation of two-way arching mechanism of the masonry infill until collapse of the upper horizontal interface between infill and frame which is known as weakest interface due to difficulties in filling the mortar between bricks of last row and upper beam. This results in the crack opening through a welldefined path and the consequent collapse of the infill.
Resumo:
We study the temperature dependent magnetic susceptibility of a strained graphene quantum dot by using the determinant quantum Monte Carlo method. Within the Hubbard model on a honeycomb lattice, our unbiased numerical results show that a relative small interaction $U$ may lead to a edge ferromagnetic like behavior in the strained graphene quantum dot, and a possible room temperature transition is suggested. Around half filling, the ferromagnetic fluctuations at the zigzag edge is strengthened both markedly by the on-site Coulomb interaction and the strain, especially in low temperature region. The resultant strongly enhanced ferromagnetic like behavior may be important for the development of many applications.
Resumo:
Wild boar (Sus scrofa) and red deer (Cervus elaphus) are the main maintenance hosts for bovine tuberculosis (bTB) in continental Europe. Understanding Mycobacterium tuberculosis complex (MTC) excretion routes is crucial to define strategies to control bTB in free-ranging populations, nevertheless available information is scarce. Aiming at filling this gap, four different MTC excretion routes (oronasal, bronchial-alveolar, fecal and urinary) were investigated by molecular methods in naturally infected hunter-harvested wild boar and red deer. In addition MTC concentrations were estimated by the Most Probable Number method. MTC DNA was amplified in all types of excretion routes. MTC DNA was amplified in at least one excretion route from 83.0% (CI95 70.8-90.8) of wild ungulates with bTB-like lesions. Oronasal or bronchial-alveolar shedding were detected with higher frequency than fecal shedding (p < 0.001). The majority of shedders yielded MTC concentrations <10(3) CFU/g or mL. However, from those ungulates from which oronasal, bronchial-alveolar and fecal samples were available, 28.2% of wild boar (CI95 16.6-43.8) and 35.7% of red deer (CI95 16.3-61.2) yielded MTC concentrations >10(3) CFU/g or mL (referred here as super-shedders). Red deer have a significantly higher risk of being super-shedders compared to wild boar (OR = 11.8, CI95 2.3-60.2). The existence of super-shedders among the naturally infected population of wild boar and red deer is thus reported here for the first time and MTC DNA concentrations greater than the minimum infective doses were estimated in excretion samples from both species.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Large scale distributed data stores rely on optimistic replication to scale and remain highly available in the face of net work partitions. Managing data without coordination results in eventually consistent data stores that allow for concurrent data updates. These systems often use anti-entropy mechanisms (like Merkle Trees) to detect and repair divergent data versions across nodes. However, in practice hash-based data structures are too expensive for large amounts of data and create too many false conflicts. Another aspect of eventual consistency is detecting write conflicts. Logical clocks are often used to track data causality, necessary to detect causally concurrent writes on the same key. However, there is a nonnegligible metadata overhead per key, which also keeps growing with time, proportional with the node churn rate. Another challenge is deleting keys while respecting causality: while the values can be deleted, perkey metadata cannot be permanently removed without coordination. Weintroduceanewcausalitymanagementframeworkforeventuallyconsistentdatastores,thatleveragesnodelogicalclocks(BitmappedVersion Vectors) and a new key logical clock (Dotted Causal Container) to provides advantages on multiple fronts: 1) a new efficient and lightweight anti-entropy mechanism; 2) greatly reduced per-key causality metadata size; 3) accurate key deletes without permanent metadata.
Resumo:
Relatório de estágio de mestrado em Enfermagem da Pessoa em Situação Crítica
Resumo:
The Symbol Digit Modalities Test (SDMT) is a widely used instrument to assess information processing speed, attention, visual scanning, and tracking. Considering that repeated evaluations are a common need in neuropsychological assessment routines, we explored test–retest reliability and practice effects of two alternate SDMT forms with a short inter-assessment interval. A total of 123 university students completed the written SDMT version in two different time points separated by a 150-min interval. Half of the participants accomplished the same form in both occasions, while the other half filled different forms. Overall, reasonable test–retest reliabilities were found (r = .70), and the subjects that completed the same form revealed significant practice effects (p < .001, dz = 1.61), which were almost non-existent in those filling different forms. These forms were found to be moderately reliable and to elicit a similar performance across participants, suggesting their utility in repeated cognitive assessments when brief inter-assessment intervals are required.
Resumo:
Dissertação de mestrado em Sociologia (área de especialização em Organizações e Trabalho)