25 resultados para Computation by Abstract Devices
em Universidade do Minho
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
La carte postale est un kaléidoscope de vues, d’ornements et de couleurs, qui consacre un tout petit espace au message. C’est à la photographie et aux procédés de reproduction photomécaniques que revient le mérite d’avoir industrialisé la production de la carte postale. Et ce sont les clichés de villes, avec leurs monuments et leurs paysages, qui confèrent à la carte postale son statut de moyen de communication de masse et qui lui concèdent une affinité avec l’industrie du tourisme. La carte postale s’est ainsi emparée de l’ambition photographique de reproduire le monde, s’alliant aux « besoins de l’exploration, des expéditions et des relevés topographiques » du médium photographique à ses débuts. Ayant comme point de départ la carte postale, notre objectif est de montrer les conséquences culturelles de la révolution optique, commencée au milieu du XIXe siècle, avec l’invention de l’appareil photo, et consumée dans la seconde moitié du XXe siècle, avec l’apparition de l’ordinateur. En effet, depuis l’apparition de l’appareil photographique et des cartes postales jusqu’au flux de pixels de Google Images et aux images satellite de Google Earth, un entrelacement de territoire, puissance et technique a été mis en oeuvre, la terre devenant, en conséquence, de plus en plus auscultée par les appareils de vision, ce qui impacte sur la perception de l’espace. Nous espérons pouvoir montrer avec cette étude que la lettre traditionnelle est à l’email ce que la carte postale est au post que l’on publie dans un blog ou dans des réseaux comme Facebook et Twitter. À notre sens, les cartes postales correspondent à l’ouverture maximale du système postal moderne, qui d’universel devient dépendant et partie intégrante des réseaux télématiques d’envoi. Par elles sont annoncés, en effet, la vitesse de transmission de l’information, la brièveté de la parole et l’hégémonie de la dimension imagétique du message, et pour finir, l’embarras provoqué par la fusion de l’espace public avec l’espace privé.
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
Implantable devices must exhibit mechanical properties similar to native tissues to promote appropriate cellular behavior and regeneration. Herein, we report a new membrane manufacture method based on the synthesis of polyelectrolyte complexes (PECs) that exhibit saloplasticity, i.e. variable physical-chemistry using salt as a plasticizer. This is a Green Chemistry approach, as PECs generate structures that are stabilized solely by reversible electrostatic interactions, avoiding the use of harmful crosslinkers completely. Furthermore, natural polyelectrolytes - chitosan and alginate - were used. Upon mixing them, membranes were obtained by drying the PECs at 37ºC, yielding compact PECs without resorting to organicsolvents. The plasticizing effect of salt after synthesis was shown by measuring tensile mechanical properties, which were lower when samples were immersed in high ionic strength solutions.Salt was also used during membrane synthesis in different quan- tities (0 M, 0.15 M and 0.5 M in NaCl) yielding structures with no significant differences in morphology and degradation (around 15% after 3 months in lysozyme). However, swelling was higher (about 10x) when synthesized in the presence of salt. In vitro cell studies using L929 fibroblasts showed that cells adhered and proliferated preferentially in membranes fabricated in the presence of salt (i.e. the membranes with lower tensile strength). Structures with physical-chemical properties controlled with precision open a path to tissue engineering strategies depending on fine tuning mechanical properties and cellular adhesion simply by changing ionic strength during membrane manufacture
Resumo:
Wharton's jelly stem cells (WJSCs) are a potential source of transplantable stem cells in cartilage-regenerative strategies, due to their highly proliferative and multilineage differentiation capacity. We hypothesized that a non-direct co-culture system with human articular chondrocytes (hACs) could enhance the potential chondrogenic phenotype of hWJSCs during the expansion phase compared to those expanded in monoculture conditions. Primary hWJSCs were cultured in the bottom of a multiwell plate separated by a porous transwell membrane insert seeded with hACs. No statistically significant differences in hWJSCs duplication number were observed under either of the culture conditions during the expansion phase. hWJSCs under co-culture conditions show upregulations of collagen type I and II, COMP, TGFβ1 and aggrecan, as well as of the main cartilage transcription factor, SOX9, when compared to those cultured in the absence of chondrocytes. Chondrogenic differentiation of hWJSCs, previously expanded in co-culture and monoculture conditions, was evaluated for each cellular passage using the micromass culture model. Cells expanded in co-culture showed higher accumulation of glycosaminoglycans (GAGs) compared to cells in monoculture, and immunohistochemistry for localization of collagen type I revealed a strong detection signal when hWJSCs were expanded under monoculture conditions. In contrast, type II collagen was detected when cells were expanded under co-culture conditions, where numerous round-shaped cell clusters were observed. Using a micromass differentiation model, hWJSCs, previously exposed to soluble factors secreted by hACs, were able to express higher levels of chondrogenic genes with deposition of cartilage extracellular matrix components, suggesting their use as an alternative cell source for treating degenerated cartilage.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
This study presents the results of preliminary test on the interaction between fingertip and touch screen. The objective of this study is to identify the fingertip posture when interacting with touch screen devices. Ten participants, 7 males and 3 females, participated in this study. The participants were asked to touch targets on the mobile devices screen by tapping them sequentially and connecting them. The participants performed the tasks in a sitting posture. A tablet with 10 inches screen and a mobile phone with 4 inches screen were used in the study. The results showed that all participants dominantly used their thumb to interact with the mobile phone in single and two hands postures. The common thumb posture adopted by the participants is the combination of the 60° pitch and 0° roll angles. While for interaction with tablet in various postures observed in the study, the participants commonly used their index fingers in the combination of 60° pitch and 0° roll angles. This study also observed the participant with long finger nails touched targets on the mobile devices screen by using her index or middle fingers very low pitch.
Resumo:
Context: Caffeic acid is described as antibacterial, but this bioactive molecule has some issues regarding solubility and stability to environmental stress. Thus, encapsulation devices are required. Objective: The aim of this work was to study the effect of the caffeic acid encapsulation by cyclodextrins on its antibacterial activity. Materials and methods: The interactions between the caffeic acid and three cyclodextrins (-cyclodextrin (CD), 2-hydroxypropyl--cyclodextrin (HPCD) and methyl--cyclodextrin were study. Results and discussion: The formation of an aqueous soluble inclusion complex was confirmed for CD and HPCD with a 1:1 stoichiometry. The CD/caffeic acid complex showed higher stability than HPCD/caffeic acid. Caffeic acid antibacterial activity was similar at pH 3 and pH 5 against the three bacteria (K. pneumoniae, S. epidermidis and S. aureus). Conclusions: The antibacterial activity of the inclusion complexes was described here for the first time and it was shown that the caffeic acid activity was remarkably enhanced by the cyclodextrins encapsulation.
Resumo:
The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.
Resumo:
Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
The sol-gel method was employed in the synthesis of di-urethane cross-linked poly( caprolactone) (PCL(530)/siloxane biohybrid ormolytes incorporating either a mixture of lithium triflate (LiCF3SO3) and the ionic liquid (IL) 1-ethyl-3-methyl imidazolium tetrafluoroborate ([Emim]BF4), or solely with [Emim]BF4 or LiCF3SO3. The ormolyte doped with [Emim]BF4 is thermally more stable and exhibits higher ionic conductivity (4 x 10-4 and 2 x 10-3 S cm-1 at 36 and 98 ºC, respectively) than those containing the LiCF3SO3/[Emim]BF4 mixture or just LiCF3SO3. The three ormolytes were employed in the production of glass/ITO/ormolyte/WO3/ITO/glass electrochromic devices (ECDs) designated as ECD@Y with Y = Li-[Emim]BF4, [Emim]BF4 and Li. The three ECDs displayed fast switching speed (ca. 30 s). ECD@Li-[Emim]BF4 exhibited an electrochromic contrast of 18.4 % and an optical density change of 0.11 in the visible region, the coloration efficiency attained at 555 nm was 159 and 80.2 cm-2 C-1 in the “on” and “off” states, respectively, and the open circuit memory was 48 hours. In the “on” state the CIE 1931 color space coordinates were x = 0.29 and y = 0.30, corresponding to blue color.
Resumo:
Polymer electrolytes are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Generically, solid polymer electrolytes (SPEs) are mixtures of salts with soft polar polymers. SPEs have many advantages including high energy density, no risk of leakage, no issues related to the presence of solvent, wide electrochemical stability windows, simplified processability and light weight. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying high ionic conductivity we have produced in the present work, flexible films based on different polymers or hybrids incorporating different salts. The polymer electrolytes studied here have been characterized by means of Differential Scanning Calorimetry, Thermogravimetric Analysis, X-ray diffraction, Polarized Optical Microscopy, complex impedance spectroscopy and cyclic voltammetry. An evaluation of the performance of the sample with the highest conductivity as electrolyte in all solid-state ECDs was performed.
Resumo:
One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.