23 resultados para Compression-molding technique

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supplementary information available at: http://www.rsc.org/suppdata/c5/gc/c5gc02231b/c5gc02231b1.pdf

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the potential of polypropylene (PP) as a candidate for fused deposition modeling (FDM)-based 3D printing technique. The entire filament production chain is evaluated, starting with the PP pellets, filament production by extrusion and test samples printing. This strategy enables a true comparison between parts printed with parts manufactured by compression molding, using the same grade of raw material. Printed samples were mechanically characterized and the influence of filament orientation, layer thickness, infill degree and material was assessed. Regarding the latter, two grades of PP were evaluated: a glass-fiber reinforced and a neat, non-reinforced, one. The results showed the potential of the FDM to compete with conventional techniques, especially for the production of small series of parts/components; also, it was showed that this technique allows the production of parts with adequate mechanical performance and, therefore, does not need to be restricted to the production of mockups and prototypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental evaluation of viscoelastic properties of concrete is traditionally made upon creep tests that consist in the application of sustained loads either in compression or in tension. This kind of testing demands for specially devised rigs and requires careful monitoring of the evolution of strains, whereas assuring proper load constancy. The characterization of creep behaviour at early ages offers additional challenges due to the strong variations in viscoelastic behaviour of concrete during such stages, demanding for several testing ages to be assessed. The present research work aims to assist in reducing efforts for continuous assessment of viscoelastic properties of concrete at early ages, by application of a dynamic testing technique inspired in methodologies used in polymer science: Dynamic Mechanical Analyses. This paper briefly explains the principles of the proposed methodology and exhibits the first results obtained in a pilot application. The results are promising enough to encourage further developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, and failure modes for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the investigation and diagnosis of damages to historical masonry structures, the state of stress of the masonry is an important characteristic that must be determined with as much accuracy as possible. Flat-jack testing is a traditional method used to determine the state of stress in historical masonry structures. However, when irregular masonry is tested the method can cause damage to the masonry units and the accuracy of the method is reduced. An enhanced technique, called tube-jack testing, is being developed at the University of Minho to reduce the damage caused during testing and improve the accuracy when used on irregular masonry. This method uses multiple cylindrical jacks inserted in a line of holes drilled in the mortar joints of the masonry, avoiding damage to the masonry units. Concurrently with the development of tube-jack testing, the effect of stress state on sonic testing is being studied. Sonic testing is often used to determine locations of voids and damage in masonry. The focus of these studies was to determine if the state of stress is influencing the sonic test results. In this paper the results of tube-jack testing and sonic testing on masonry walls, built for the purpose of this study in the laboratory, loaded in compression is presented. The tube-jack testing is used to estimate the state of stress in the masonry and the sonic test results are evaluated based on the effect of the applied load on the wall. Future testing and study are suggested for continued development of these test methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Embedded Through-Section (ETS) technique is a promising technique for the shear strengthening of existing (RC) elements. According to this technique, holes are drilled through the beam section, and bars of steel or FRP material are introduced into these holes and bonded to the concrete with adhesive materials. An experimental program was carried out with RC T-cross section beams strengthened in shear using the ETS steel bars and ETS CFRP rods. The research is focused on the evaluation of the ETS efficiency on beams with different percentage of existing internal transverse reinforcement (ρsw=0.0%, ρsw=0.1% and ρsw=0.17%). The effectiveness of different ETS strengthening configurations was also investigated. The good bond between the strengthening ETS bars and the surrounding concrete allowed the yield initiation of the ETS steel bars and the attainment of high tensile strains in the ETS CFPR rods, leading to significant increase of shear capacity, whose level was strongly influenced by the inclination of the ETS bars and the percentage of internal transverse reinforcement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the main features of finite element FE numerical model developed using the computer code FEMIX to predict the near-surface mounted NSM carbon-fiber-reinforced polymer CFRP rods shear repair contribution to corroded reinforced concrete RC beams. In the RC beams shear repaired with NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves onto the concrete cover of the RC beam’s lateral faces and are bonded to the concrete with high epoxy adhesive. Experimental and 3D numerical modelling results are presented in this paper in terms of load-deflection curves, failure modes and slip information of the tensile steel bars for 4 short corroded beams: two corroded beams (A1CL3-B and A1CL3-SB) and two control beams (A1T-B and A1T-SB), the beams noted with B were let repaired in bending only with NSM CFRP rods while the ones noted with SB were repaired in both bending and shear with NSM technique. The corrosion of the tensile steel bars and its effect on the shear capacity of the RC beams was discussed. Results showed that the FE model was able to capture the main aspects of the experimental load-deflection curves of the RC beams, moreover it has presented the experimental failure modes and FE numerical modelling crack patterns and both gave similar results for non-shear repaired beams which failed in diagonal tension mode of failure and for shear-repaired beams which failed due to large flexural crack at the middle of the beams along with the concrete crushing, three dimensional crack patterns were produced for shear-repaired beams in order to investigate the splitting cracks occurred at the middle of the beams and near the support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an experimental program to assess the tensile strain distribution along prestressed carbon fiber reinforced polymer (CFRP) reinforcement flexurally applied on the tensile surface of RC beams according to near surface mounted (NSM) technique. Moreover, the current study aims to propose an analytical formulation, with a design framework, for the prediction of distribution of CFRP tensile strain and bond shear stress and, additionally, the prestress transfer length. After demonstration the good predictive performance of the proposed analytical approach, parametric studies were carried out to analytically evaluate the influence of the main material properties, and CFRP and groove cross section on the distribution of the CFRP tensile strain and bond shear stress, and on the prestress transfer length. The proposed analytical approach can also predict the evolution of the prestress transfer length during the curing time of the adhesive by considering the variation of its elasticity modulus during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timber frame buildings are well known as an efficient seismic resistant structure popular all over the world not only due to their seismic performance, but also to their low cost and the strength they offer. These constructions still exist today and it is important to be able to preserve them, so a better knowledge on their behaviour is sought. Furthermore, historic technologies could be used even in modern constructions to build seismic resistant buildings using more natural materials with lesser costs. A great rehabilitation effort is being carried out on this type of buildings, as their neglect has led to decay or their change in use and alterations to the structure has led to the need to retrofit such buildings; only recently studies on their behaviour have become available and only a few of them address the issue of possible strengthening techniques for this kind of walls. In this scope, an innovative retrofitting technique (near surface mounted steel flat bars) is proposed and validated on traditional timber frame walls based on an extensive experimental program. The results of the static cyclic tests on distinct wall typologies retrofitted with the NSM technique are herein presented and discussed in detail. The main features on deformation, lateral stiffness, lateral resistance and seismic performance indexes are analysed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microinjection molding of polymer composites with carbon nanotubes (CNT) requires previous production of the nanocomposites, often by melt extrusion. Each processing step has a thermo-mechanical effect on the polymer melt, conveying different properties to the final product. In this work, polyamide 6 and its composites with pristine and functionalized CNT (f-CNT) were processed by a mini twin-screw extrusion, followed by microinjection molding. The morphology induced on the polymer by each process was analyzed by differential scanning calorimetry and wide angle X-ray diffraction. Calorimetric analysis showed a secondary crystallization for the microinjected materials, absent for the extruded materials. The characterization of microinjected polyamide 6 by X-ray diffraction revealed a large contribution of the c phase to the total crystallinity, mainly in the skin region, while the nanocomposites and extruded materials were characterized by a larger contribution of the a phase. Functionalization of CNT did not affect significantly the polymer morphology compared to composites with pristine CNT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fraction increased the degree of crystallinity of the blend and the miscibility of the base polymers as verified by the Fox model. The WAXD analysis indicates that the presence of PHA hindered the PLA crystallization. The crystallization evolution trough PHA weight fraction (wf) shows a phase inversion around 50-60%. SEM analyses confirmed that the miscibility of PHA/PLA blends increased with the incorporation of PHA and became total for values of PHA higher that 50%.