22 resultados para Cash Investments Are Required For Restaurant Purchases
em Universidade do Minho
Resumo:
Context: Caffeic acid is described as antibacterial, but this bioactive molecule has some issues regarding solubility and stability to environmental stress. Thus, encapsulation devices are required. Objective: The aim of this work was to study the effect of the caffeic acid encapsulation by cyclodextrins on its antibacterial activity. Materials and methods: The interactions between the caffeic acid and three cyclodextrins (-cyclodextrin (CD), 2-hydroxypropyl--cyclodextrin (HPCD) and methyl--cyclodextrin were study. Results and discussion: The formation of an aqueous soluble inclusion complex was confirmed for CD and HPCD with a 1:1 stoichiometry. The CD/caffeic acid complex showed higher stability than HPCD/caffeic acid. Caffeic acid antibacterial activity was similar at pH 3 and pH 5 against the three bacteria (K. pneumoniae, S. epidermidis and S. aureus). Conclusions: The antibacterial activity of the inclusion complexes was described here for the first time and it was shown that the caffeic acid activity was remarkably enhanced by the cyclodextrins encapsulation.
Resumo:
[Extrat] Thermoplastic profiles are very attractive due to their inherent design freedom. However, the usual methodologies employed to design extrusion forming tools, based on experimental based trial–and–error procedures, are highly dependent on the designer’s experience and lead to high resources consumption. Despite of the relatively low cost of the raw materials employed on the production of this type of profiles, the resources involved in the die design process significantly increase their cost. These difficulties are even more evident when a complex geometry profile has to be produced and there is no previous experience with similar geometries. Therefore, novel design approaches are required, in order to reduce the required resources and guarantee a good performance for the produced profile. (...)
Resumo:
Dissertação de mestrado em Psicologia Aplicada
Resumo:
A search has been performed for pair production of heavy vector-like down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum and multiple jets. One or more jets are required to be tagged as arising from b-quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb−1. No significant excess of events is observed above the expected background. Limits are set on vector-like B production, as a function of the B branching ratios, assuming the allowable decay modes are B→Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B→Wt, the observed (expected) 95% CL lower limit on the vector-like B mass is 810 GeV (760 GeV). In the case where the vector-like B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% CL lower limit on the vector-like B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T5/3, with subsequent decay T5/3→Wt, sets an observed (expected) 95% CL lower limit on the T5/3 mass of 840 GeV (780 GeV).
Resumo:
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of s√=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.
Resumo:
Rational manipulation of mRNA folding free energy allows rheostat control of pneumolysin production by Streptococcus pneumoniae
Resumo:
The cyclic load triaxial test is a laboratory test that allows studying the mechanical behaviour of unbound granular materials used in base/subbase layers of road pavements. The resilient modulus and permanent strains are required as inputs in structural pavement design. This paper presents some results obtained for recycled materials (crushed concrete aggregate and blended crushed waste aggregate), with a view to promoting their use in pavement structures. Results relating to a reference material (limestone) are also presented, for comparison. All the test results discussed in this paper were obtained in variable cyclic radial pressure (VCP) tests. The tests performed (VCP) aim to study the influence of water content on the resilient modulus of recycled materials, as well as on the resistance to permanent deformation. Using the experimental data as a basis, further modelling work was carried out to establish the stresses developing in base/capping layers in typical Belgian road pavements. These numerical results allow to propose some simplifications of the stress paths applied in the testing procedures and to establish a new test protocol that also considers compaction during construction works. The results of this research work provide an excellent set of findings for the mechanical characterization of unbound base materials through the cyclic triaxial test, and contribute to a better understanding and correct application of recycled materials under geotechnical engineering background
Resumo:
Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c. − 124 and c. − 146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c. − 124C4T mutation was the most common event, present in 2.3% (3/130), and the c. − 146C4T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient’s clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.
Resumo:
A generic search for anomalous production of events with at least three charged leptons is presented. The data sample consists of pp collisions at s√=8 TeV collected in 2012 by the ATLAS experiment at the CERN Large Hadron Collider, and corresponds to an integrated luminosity of 20.3 fb−1. Events are required to have at least three selected lepton candidates, at least two of which must be electrons or muons, while the third may be a hadronically decaying tau. Selected events are categorized based on their lepton flavour content and signal regions are constructed using several kinematic variables of interest. No significant deviations from Standard Model predictions are observed. Model-independent upper limits on contributions from beyond the Standard Model phenomena are provided for each signal region, along with prescription to re-interpret the limits for any model. Constraints are also placed on models predicting doubly charged Higgs bosons and excited leptons. For doubly charged Higgs bosons decaying to eτ or μτ, lower limits on the mass are set at 400 GeV at 95% confidence level. For excited leptons, constraints are provided as functions of both the mass of the excited state and the compositeness scale Λ, with the strongest mass constraints arising in regions where the mass equals Λ. In such scenarios, lower mass limits are set at 3.0 TeV for excited electrons and muons, 2.5 TeV for excited taus, and 1.6 TeV for every excited-neutrino flavour.
Resumo:
In the last few years, many reports have been describing promising biocompatible and biodegradable materials that can mimic in a certain extent the multidimensional hierarchical structure of bone, while are also capable of releasing bioactive agents or drugs in a controlled manner. Despite these great advances, new developments in the design and fabrication technologies are required to address the need to engineer suitable biomimetic materials in order tune cells functions, i.e. enhance cell-biomaterial interactions, and promote cell adhesion, proliferation, and differentiation ability. Scaffolds, hydrogels, fibres and composite materials are the most commonly used as biomimetics for bone tissue engineering. Dynamic systems such as bioreactors have also been attracting great deal of attention as it allows developing a wide range of novel in vitro strategies for the homogeneous coating of scaffolds and prosthesis with ceramics, and production of biomimetic constructs, prior its implantation in the body. Herein, it is overviewed the biomimetic strategies for bone tissue engineering, recent developments and future trends. Conventional and more recent processing methodologies are also described.
Resumo:
Dissertação de mestrado em Engenharia Mecatrónica (área de especialização de Tecnologia de Manufatura)
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
The Symbol Digit Modalities Test (SDMT) is a widely used instrument to assess information processing speed, attention, visual scanning, and tracking. Considering that repeated evaluations are a common need in neuropsychological assessment routines, we explored test–retest reliability and practice effects of two alternate SDMT forms with a short inter-assessment interval. A total of 123 university students completed the written SDMT version in two different time points separated by a 150-min interval. Half of the participants accomplished the same form in both occasions, while the other half filled different forms. Overall, reasonable test–retest reliabilities were found (r = .70), and the subjects that completed the same form revealed significant practice effects (p < .001, dz = 1.61), which were almost non-existent in those filling different forms. These forms were found to be moderately reliable and to elicit a similar performance across participants, suggesting their utility in repeated cognitive assessments when brief inter-assessment intervals are required.
Resumo:
Tese de Doutoramento em Ciências da Saúde
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.