7 resultados para Cardiac death, Microsimulation, Pre-hospital care, STEMI, Time-to-needle

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Enfermagem da Pessoa em Situação Crítica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Worldwide, around 9% of the children are born with less than 37 weeks of labour, causing risk to the premature child, whom it is not prepared to develop a number of basic functions that begin soon after the birth. In order to ensure that those risk pregnancies are being properly monitored by the obstetricians in time to avoid those problems, Data Mining (DM) models were induced in this study to predict preterm births in a real environment using data from 3376 patients (women) admitted in the maternal and perinatal care unit of Centro Hospitalar of Oporto. A sensitive metric to predict preterm deliveries was developed, assisting physicians in the decision-making process regarding the patients’ observation. It was possible to obtain promising results, achieving sensitivity and specificity values of 96% and 98%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receiver-operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1-specificity) for different cut-off values used to classify an individual as healthy or diseased. In time-to-event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time-dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time-dependent disease outcomes, time-dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time-dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right-censored data, as well as covariate-dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays in healthcare, the Clinical Decision Support Systems are used in order to help health professionals to take an evidence-based decision. An example is the Clinical Recommendation Systems. In this sense, it was developed and implemented in Centro Hospitalar do Porto a pre-triage system in order to group the patients on two levels (urgent or outpatient). However, although this system is calibrated and specific to the urgency of obstetrics and gynaecology, it does not meet all clinical requirements by the general department of the Portuguese HealthCare (Direção Geral de Saúde). The main requirement is the need of having priority triage system characterized by five levels. Thus some studies have been conducted with the aim of presenting a methodology able to evolve the pre-triage system on a Clinical Recommendation System with five levels. After some tests (using data mining and simulation techniques), it has been validated the possibility of transformation the pre-triage system in a Clinical Recommendation System in the obstetric context. This paper presents an overview of the Clinical Recommendation System for obstetric triage, the model developed and the main results achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors.