14 resultados para COPHYLOGENY RECONSTRUCTION PROBLEM
em Universidade do Minho
Resumo:
Autor proof
Resumo:
This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.
Resumo:
This chapter aims at developing a taxonomic framework to classify the studies on the flexible job shop scheduling problem (FJSP). The FJSP is a generalization of the classical job shop scheduling problem (JSP), which is one of the oldest NP-hard problems. Although various solution methodologies have been developed to obtain good solutions in reasonable time for FSJPs with different objective functions and constraints, no study which systematically reviews the FJSP literature has been encountered. In the proposed taxonomy, the type of study, type of problem, objective, methodology, data characteristics, and benchmarking are the main categories. In order to verify the proposed taxonomy, a variety of papers from the literature are classified. Using this classification, several inferences are drawn and gaps in the FJSP literature are specified. With the proposed taxonomy, the aim is to develop a framework for a broad view of the FJSP literature and construct a basis for future studies.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.
Resumo:
To solve a health and safety problem on a waste treatment facility, different multicriteria decision methods were used, including the PROV Exponential decision method. Four alternatives and ten attributes were considered. We found a congruent solution, validated by the different methods. The AHP and the PROV Exponential decision method led us to the same options ordering, but the last method reinforced one of the options as being the best performing one, and detached the least performing option. Also, the ELECTRE I method results led to the same ordering which allowed to point the best solution with reasonable confidence. This paper demonstrates the potential of using multicriteria decision methods to support decision making on complex problems such as risk control and accidents prevention.
Resumo:
The number of houses damaged or destroyed after disasters is frequently large, and re-housing of homeless people is one of the most important tasks of reconstruction programmes. Reconstruction works often last long and during that time, it is essential to provide victims with the minimum conditions to live with dignity, privacy, and protection. This research intends to demonstrate the crucial role of temporary accommodation buildings to provide spaces where people can live and gradually resume their life until they have a permanent house. The study also aims to identify the main problems of temporary accommodation strategies and to discuss some principles and guidelines in order to reach better design solutions. It is found that temporary accommodation is an issue that goes beyond the simple provision of buildings, since the whole space for temporary settlement is important. Likewise, temporary accommodation is a process that should start before a disaster occurs, as a preventive pre-planning. In spite of being temporary constructions, these housing buildings are one of the most important elements to provide in emergency scenarios, contributing for better recovery and reconstruction actions.
Resumo:
PhD Thesis in Bioengineering
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
Objective: The aim of this study is to improve the understanding of self-changes after an intervention for depression focused on implicative dilemmas, a type of cognitive conflict related to identity. As recent research has highlighted the relevance of identity-related dilemmas in clients with depression, we sought to assess the way in which clients resolve such inner conflicts after a tailored dilemma-focused intervention and how this is reflected in the clients’ self-narratives. Method: We used three instruments to observe differences between good (n = 5) and poor (n = 5) outcome cases: (i) the Repertory Grid Technique to track the resolution of dilemmas, (ii) the Change Interview to compile clients’ accounts of changes at posttreatment, and (iii) the Innovative Moments Coding System to examine the emergence of clients’ novelties at the Change Interview. Results: Groups did not differ in terms of the number and relevance of client-identified significantly helpful events. However, between-group differences were found for the resolution of dilemmas and for the proportion of high-level innovative moment (IM) types. Furthermore, a greater self-narrative reconstruction was associated with higher levels of symptom improvement. Conclusions: Good outcome cases seem to be associated with the resolution of conflicts and high-level IMs.
Resumo:
Dissertação de mestrado em Crime, Diferença e Desigualdade
Resumo:
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2016.00275
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
Genome-scale metabolic models are valuable tools in the metabolic engineering process, based on the ability of these models to integrate diverse sources of data to produce global predictions of organism behavior. At the most basic level, these models require only a genome sequence to construct, and once built, they may be used to predict essential genes, culture conditions, pathway utilization, and the modifications required to enhance a desired organism behavior. In this chapter, we address two key challenges associated with the reconstruction of metabolic models: (a) leveraging existing knowledge of microbiology, biochemistry, and available omics data to produce the best possible model; and (b) applying available tools and data to automate the reconstruction process. We consider these challenges as we progress through the model reconstruction process, beginning with genome assembly, and culminating in the integration of constraints to capture the impact of transcriptional regulation. We divide the reconstruction process into ten distinct steps: (1) genome assembly from sequenced reads; (2) automated structural and functional annotation; (3) phylogenetic tree-based curation of genome annotations; (4) assembly and standardization of biochemistry database; (5) genome-scale metabolic reconstruction; (6) generation of core metabolic model; (7) generation of biomass composition reaction; (8) completion of draft metabolic model; (9) curation of metabolic model; and (10) integration of regulatory constraints. Each of these ten steps is documented in detail.
Resumo:
The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.