12 resultados para CONJUGATED COPOLYMERS

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyimide co-polymers have been prepared based on different diamines as co-monomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed and the dielectric complex function, ac conductivity and electric modulus of the co-polymers were investigated as a function of CN group content in the frequency range from 0.1 Hz to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150ºC, the dielectric constant increases with increasing temperature due to increaseing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN groups content present in the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by an heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. Moreover, it is expected that introducing more conjugation and rigidity into the resulting system will further improve its properties. The development of chromo/fluorescent probes that are capable of detecting ions with high sensitivity and selectivity in aqueous media is currently a topic of strong interest and the design of heteroditopic receptors that contain two or more different binding sites for the simultaneous complexation of cationic and anionic guests is a emerging field of supramolecular chemistry. In this communication, we report the synthesis of new phenanthroimidazoles substituted at position 2 with arylthienyl or arylfuryl moieties possessing substituents of different electronic character, in order to tune the chromo/fluoro response in the presence of relevant anions and metal cations. Their photophysical properties and chemosensory ability were studied in acetonitrile and mixtures of acetonitrile and water, and selective detection of cyanide was achieved in aqueous mixtures for some of the derivatives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the research of sensors with good sensitivity and good selectivity in aqueous medium has been of great interest. Chemosensors soluble in aqueous media are very interesting, because of the importance in revealing a number of biological processes, disease states and environmental pollutions. 2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by a heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. In this communication, we report the synthesis of new phenanthroimidazoles, substituted at position 2 with (hetero)aryl groups of different electronic character, in order to evaluate their photophysical properties and chemosensory ability. The new derivatives were characterized by the usual techniques and a detailed photophysical study was undertaken. The evaluation of the compounds as fluorimetric chemosensors was carried out by performing titrations in acetonitrile and acetonitrile/water in the presence of relevant organic and inorganic anions, and of alkaline, alkaline-earth and transition metal cations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of organic materials displaying high two-photon absorption (TPA) has attracted much attention in recent years due to a variety of potential applications in photonics and optoelectronics, such as three-dimensional optical data storage, fluorescence imaging, two-photon microscopy, optical limiting, microfabrication, photodynamic therapy, upconverted lasing, etc. The most frequently employed structural motifs for TPA materials are donor–pi bridge–acceptor (D–pi–A) dipoles, donor–pi bridge–donor (D–pi–D) and acceptor–pi bridge-acceptor (A–pi–A) quadrupoles, octupoles, etc. In this work we present the synthesis and photophysical characterization of quadrupolar heterocyclic systems with potential applications in materials and biological sciences as TPA chromophores. Indole is a versatile building block for the synthesis of heterocyclic systems for several optoelectronic applications (chemosensors, nonlinear optical, OLEDs) due to its photophysical properties and donor electron ability and 4H-pyran-4-ylidene fragment is frequently used for the synthesis of red light-emitting materials. On the other hand, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric (2) units are usually used as strong acceptor moieties for the preparation of π-conjugated systems of the push-pull type. These building blocks were prepared by Knoevenagel condensation of the corresponding ketone precursor with malononitrile or 1,3-diethyl-dihydro-2-thiobarbituric acid. The new quadrupolar 4H-pyran-4-ylidene fluorophores (3) derived from indole were prepared through condensation of 5-methyl-1H-indole-3-carbaldehyde with the acceptor precursors 1 and 2, in the presence of a catalytical amount of piperidine. The new compounds were characterized by the usual spectroscopic techniques (UV-vis., FT-IR and multinuclear NMR - 1H, 13C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous polymer membranes based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) copolymers, P(VDF-TrFE)/PEO, are prepared through the, from partial to total, elimination of PEO, leading to interconnected micropores in the polymer blends. Electrolyte uptake, thermal and mechanical properties depend on the amount of PEO present in the polymer blend. Further, the degree of crystallinity of PEO and the elastic modulus (E´) of the polymer blend decrease with increasing PEO removal. Electrical properties of the polymer blend membranes are influenced by the porosity and are dominated by diffusion. The temperature dependence of ionic conductivity follows the Arrhenius behavior. It is the highest for the membranes with a volume fraction of pores of 44% (i.e, 90% PEO removal), reaching a value of 0.54 mS.cm-1 at room temperature. Battery performance was determined by assembling Li/C-LiFePO4 swagelok cells. The polymer blends with 90% PEO removal exhibit rate (124 mAhg-1 at C/5 and 47 mAhg-1 at 2C) and cycling capabilities suitable for lithium ion battery applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supramolecular hydrogels rely on small molecules that self-assemble in water as a result of the cooperative effect of several relatively weak intermolecular interactions. Peptide-based low molecular weight hydrogelators have attracted enormous interest owing to the simplicity of small molecules combined with the versatility and biocompatibility of peptides. In this work, naproxen, a well known non-steroidal anti-inflammatory drug, was N-conjugated with various dehydrodipeptides to give aromatic peptide amphiphiles that resist proteolysis. Molecular dynamics simulations were used to obtain insight into the underlying molecular mechanism of self-assembly and to rationalize the design of this type of hydrogelators. The results obtained were in excellent agreement with the experimental observations. Only dehydrodipeptides having at least one aromatic amino acid gave hydrogels. The characterization of the hydrogels was carried out using transmission electron microscopy (TEM), circular dichroism (CD), fluorescence spectroscopy and also rheological assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Antimicrobial peptides (AMPs) are good candidates to treat burn wounds, a major cause of morbidity, impaired life quality and resources consumption in developed countries. We took advantage of a commercially available hydrogel, Carbopol, a vehicle for topical administration that maintains a moist environment within the wound site. We hypothesized that the incorporation of LLKKK18 conjugated to dextrin would improve the healing process in rat burns. Whereas the hydrogel improves healing, LLKKK18 released from the dextrin conjugates further accelerates wound closure, and simultaneously improving the quality of healing. Indeed, the release of LLKKK18 reduces oxidative stress and inflammation (low neutrophil and macrophage infiltration and pro-inflammatory cytokines levels). Importantly, it induced a faster resolution of the inflammatory stage through early M2 macrophage recruitment. In addition, LLKKK18 stimulates angiogenesis (increased VEGF and microvessel development in vivo), potentially contributing to more effective transport of nutrients and cytokines. Moreover, collagen staining evaluated by Masson’s Trichrome was visually much more intense after treatment with LLKKK18, suggesting higher collagen deposition. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of α-amylase degradation on the release of gentamicin from starch-conjugated chitosan microparticles was investigated up to 60 days. Scanning electron microscopic observations showed an increase in the porosity and surface roughness of the microparticles as well as reduced diameters. This was confirmed by 67% weight loss of the microparticles in the presence of α-amylase. Over time, a highly porous matrix was obtained leading to increased permeability and increased water uptake with possible diffusion of gentamicin. Indeed, a faster release of gentamicin was observed with α-amylase. Starch-conjugated chitosan particles are non-toxic and highly biocompatible for an osteoblast (SaOs-2) and fibroblast (L929) cell line as well as adipose-derived stem cells. When differently produced starch-conjugated chitosan particles were tested, their cytotoxic effect on SaOs-2 cells was found to be dependent on the crosslinking agent and on the amount of starch used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Medicinal Chemistry