73 resultados para Biomedical technicians

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroactive polymers are one of the most interesting class of polymers used as smart materials in various applications, such as the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties, conductivity and antibacterial characteristics, through Ag inclusions. This work reports on Ag-TiNx electrodes, deposited by d. c. and pulsed magnetron sputtering at room temperature on poly(vinylidene fluoride), PVDF, the all-round best piezoelectric polymer.. Composition of the electrodes was assessed by microanalysis X-ray system (EDS - energy dispersive spectrometer). The XRD results revealed that the deposition conditions preserve the polymer structure and suggested the presence of crystalline fcc-TiN phase and fcc-Ag phase in samples with N2 flow above 3 sccm. According to the results obtained from SEM analysis, the coatings are homogeneous and Ag clusters were found for samples with nitrogen flow above 3 sccm. With increasing nitrogen flow, the sheet resistivity tend to be lower than the samples without nitrogen, leading also to a decrease of the piezoelectric response. It is concluded that the deposition conditions do significantly affect the piezoelectric polymer, which maintain its characteristics for sensor/actuator applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to remarkable physical properties, special surface chemistry and excellent biological properties, as low toxicity, biocompatibility and biodegradability, nanocellulose has gained much attention for its use as biomedical material, applied in medical implants, tissue engineering, drug delivery, wound-healing, cardiovascular applications, among others. This paper presents a review on nanocellulose applied in biomedical area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the thermal stability of TiAgx thin films, deposited by magnetron sputtering, was evaluated, envisaging their application in biomedical devices, namely as electrodes for biosignal acquisition. Based on the composition and microstructural characterization, a set of four representative TiAgx thin films was selected in order to infer whether they are thermally stable in terms of functional properties. In order to achieve this purpose, the structural and morphological evolution of the films with annealing temperature was correlated with their electrical, mechanical and thermal properties. Two distinct zones were identified and two samples from each zone were extensively analysed. In the first zone (zone I), Ti was the main component (Ti-rich zone) while in the second, zone II, the Ag content was more significant. The selected samples were annealed in vacuum at four different temperatures up to 500 oC. For the samples produced within zone I, small microstructural changes were observed due to the recrystallization of the Ti structure and grain size increment. Also, no significant changes were observed with annealing temperature regarding the f l ’ functional properties, being thermally stable up to 500 oC. For higher Ag contents (zone II) the energy supplied by thermal treatments was sufficient to activate the crystallization of Ti-Ag intermetallic phases. A strong increase of the grain size of these phases was also reported. The structural and morphological organization proved to be determinant for the physical responses of the TiAgx system. The hardness and Y g’s modulus were significantly improved with the formation of the intermetallic phases. The silver addition and annealing treatments also played an important role in the electrical conductivity of the films, which was once again improved by the formation of Ti-Ag phases. The thermal diffusivity of the films was practically unchanged with the heat-treatment. This set of results shows that this intermetallic-like thin film system has good thermal stability up to high temperatures (as high as 500 oC), which in case of the highest Ag content zone is particularly evident for electrical and mechanical properties, showing an important improvement. Hardness increases about three times, while resistivity values become half of those from the lowest Ag contents zone. These set of characteristics are consistent with the targeted applications, namely in terms of biomedical sensing devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti-Me binary intermetallic thin films based on a titanium matrix doped with increasing amounts of Me (Me = Al, Cu) were prepared by magnetron sputtering (under similar conditions), aiming their application in biomedical sensing devices. The differences observed on the composition and on the micro(structural) features of the films, attributed to changes in the discharge characteristics, were correlated with the electrical properties of the intermetallic systems (Ti-Al and Ti-Cu). For the same Me exposed areas placed on the Ti target (ranging from 0.25 cm2 to 20 cm2) the Cu content increased from 3.5 at.% to 71.7 at.% in the Ti-Cu system and the Al content, in Ti-Al films, ranged from 11 to 45 at.%. The structural characterization evidenced the formation of metastable Ti-Me intermetallic phases for Al/Ti atomic ratios above 0.20 and for Cu/Ti ratios above 0.25. For lower Me concentrations, the effect of the α-Ti(Me) structure domains the overall structure. With the increase amount of the Me into Ti structure a clear trend for amorphization was observed. For both systems it was observed a significant decrease of the electrical resistivity with increasing Me/Ti atomic ratios (higher than 0.5 for Al/Ti atomic ratio and higher than 1.3 for Cu/Ti atomic ratio). Although similar trends were observed in the resistivity evolution for both systems, the Ti-Cu films presented lower resistivity values in comparison to Ti-Al system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (área de especialização em Química)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics. As the interaction of biomaterials with the biological milieu occurs at the surface of the materials, it is expected that synthetic substrates with extreme and controllable wettability ranging from superhydrophilic to superhydrophobic regimes could bring about the possibility of new investigations of cellâ material interactions on nonconventional surfaces and the development of alternative devices with biomedical utility. This first part of the review will describe in detail how proteins and cells interact with micro/nano-structured surfaces exhibiting extreme wettabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Antimicrobial peptides (AMPs) are good candidates to treat burn wounds, a major cause of morbidity, impaired life quality and resources consumption in developed countries. Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, represents the second world’s deadliest infectious disease, affecting around 9 million people worldwide in 2013. Of those, about 1.1 million died from the disease. The potential of cathelicin, a human AMP, in the treatment of mycobacteriosis and wound regeneration was assessed in pre-clinical trials. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Smart Drug Search is publicly accessible at http://sing.ei.uvigo.es/sds/. The BIOMedical Search Engine Framework is freely available for non-commercial use at https://github.com/agjacome/biomsef

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PhD in Sciences Specialty in Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine organisms are rich in a variety of materials with potential use in Tissue Engineering and Regenerative Medicine. One important example is fucoidan, a sulfated polysaccharide extracted from the cell wall of brown seaweeds.  Fucoidan is composed by L-fucose, sulfate groups and glucuronic acid. It has important bioactive properties such as anti-oxidative, anticoagulant, anticancer and reducing the blood glucose (1). In this work, the biomedical potential of fucoidan-based materials as drug delivery system was assessed by processing modified fucoidan (MFu) into particles by photocrosslinking using superamphiphobic surfaces and visible light. Fucoidan was modified by methacrylation reaction using different concentrations of methacrylate anhydride, namely 8% v/v (MFu1) and 12% v/v (MFu2). Further, MFu particles with and without insulin (5% w/v) were produced by pipetting a solution of 5% MFu with triethanolamine and eosin-y onto a superamphiphobic surface and then photocrosslinking using visible light (2). The developed particles were characterized to assess their chemistry, morphology, swelling behavior, drug release, insulin content and encapsulation efficiency. Moreover, the viability assays of fibroblast L929 cells in contact with MFu particles showed good adhesion and proliferation up to 14 days. Furthermore, the therapeutic potential of these particles using human beta cells is currently under investigation. Results obtained so far suggest that modified fucoidan particles could be a good candidate for diabetes mellitus therapeutic approaches.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper aims to describe the Sequential Excavation Method, used for excava-tion in underground works, as well as the related risks and preventive measures. This method has characteristics that differentiate it from other tunnelling techniques: it uses a larger number of workers and equipment; it has a high concurrency of tasks with various workers and equip-ment quite exposed to hazards; and it uses many potentially aggressive chemicals. Firstly, it is given a broad overview of this issue. Afterwards, it will be presented the results of a survey to a sample of experienced technicians, aimed at gauging the relevance of a set of guidelines relat-ing to the design and work phases, applicable to the domestic market and prepared following technical visits to works abroad.