12 resultados para Biofilm Development
em Universidade do Minho
Resumo:
Biofilm research is growing more diverse and dependent on high-throughput technologies and the large-scale production of results aggravates data substantiation. In particular, it is often the case that experimental protocols are adapted to meet the needs of a particular laboratory and no statistical validation of the modified method is provided. This paper discusses the impact of intra-laboratory adaptation and non-rigorous documentation of experimental protocols on biofilm data interchange and validation. The case study is a non-standard, but widely used, workflow for Pseudomonas aeruginosa biofilm development, considering three analysis assays: the crystal violet (CV) assay for biomass quantification, the XTT assay for respiratory activity assessment, and the colony forming units (CFU) assay for determination of cell viability. The ruggedness of the protocol was assessed by introducing small changes in the biofilm growth conditions, which simulate minor protocol adaptations and non-rigorous protocol documentation. Results show that even minor variations in the biofilm growth conditions may affect the results considerably, and that the biofilm analysis assays lack repeatability. Intra-laboratory validation of non-standard protocols is found critical to ensure data quality and enable the comparison of results within and among laboratories.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Tese de Doutoramento em Engenharia Biomédica.
Resumo:
Musculoskeletal diseases are one of the leading causes of disability worldwide. Tendon injuries are responsible for substantial morbidity, pain and disability. Tissue engineering strategies aim at translating tendon structure into biomimetic materials. The main goal of the present study is to develop microengineered hydrogel fibers through the combination of microfabrication and chemical interactions between oppositely charged polyelectrolytes. For this, methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (MeCS) were combined with chitosan (CHT). Hydrogel fibers were obtained by injecting polymer solutions (either MeHA or MeHA/MeCS and CHT) in separate microchannels that join at a y-junction, with the materials interacting upon contact at the interface. To evaluate cell behavior, human tendon derived cells (hTDCs) were isolated from tendon surplus samples during orthopedic surgeries and seeded on top of the fibers. hTDCs adhered to the surface of the fibers, remaining viable, and were found to be expressing CD44, the receptor for hyaluronic acid. The synthesis of hydrogel fibers crosslinkable through both physical and chemical mechanisms combined with microfabrication technology allows the development of biomimetic structures with parallel fibers being formed towards the replication of tendon tissue architecture.
Tendon regeneration through a scaffold-free approach: development of tenogenic magnetic hASCs sheets
Resumo:
Tendon's regeneration is limited, demanding for cell-based strategies to fully restore their functionality upon injury. The concept of magnetic force-based TE(1), generally using magnetic nanoparticles may enable, for example, stem cell stimulation and/or remote control over TE constructs. Thus, we originally propose the development of magnetic cell sheets (magCSs) with tenogenic capability, aimed at promoting tendon's regeneration. A Tenomodulin (TNMD+) subpopulation was sorted from human adipose stem cells (hASCs), using TNMD-coated immunomagnetic beads(2) and used as cell source for the development of magCSs. Briefly, cells were labeled with iron oxide composite particles (Micromod) and cultured for 7 days in α-MEM medium with or without magnetic stimulation provided by a magnetic device (nanoTherics). CSs were retrieved from the plates using magnet attraction as contiguous sheets of cells within its own deposited ECM.
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
The present work aimed to assess the early-age evolution of E-modulus of epoxy adhesives used for Fibre-Reinforced Polymer (FRP) strengthening applications. The study involved adapting an existing technique devised for continuous monitoring of concrete stiffness since casting, called EMM-ARM (Elasticity Modulus Measurement through Ambient Response Method) for evaluation of epoxy stiffness. Furthermore, monotonic tensile tests according to ISO standards and cyclic tensile tests were carried out at several ages. A comparison between the obtained results was performed in order to better understand the performance of the several techniques in the assessment of stiffness of epoxy resins. When compared to the other methodologies, the method for calculation of E-modulus recommended by ISO standard led to lower values, since in the considered strain interval, the adhesive had a non-linear stress–strain relationship. The EMM-ARM technique revealed its capability in clearly identifying the hardening kinetics of epoxy adhesives, measuring the material stiffness growth during the entire curing period. At very early ages the values of Young׳s modulus obtained with quasi-static tests were lower than the values collected by EMM-ARM, due to the fact that epoxy resin exhibited a significant visco-elastic behaviour.
Resumo:
Since the last decade of the twentieth century, the healthcare industry is paying attention to the environmental impact of their buildings and therefore new regulations, policy goals and Buildings Sustainability Assessment (HBSA) methods are being developed and implemented. At the present, healthcare is one of the most regulated industries and it is also one of the largest consumers of energy per net floor area. To assess the sustainability of healthcare buildings it is necessary to establish a set of benchmarks related with their life-cycle performance. They are both essential to rate the sustainability of a project and to support designers and other stakeholders in the process of designing and operating a sustainable building, by allowing the comparison to be made between a project and the conventional and best market practices. This research is focused on the methodology to set the benchmarks for resources consumption, waste production, operation costs and potential environmental impacts related to the operational phase of healthcare buildings. It aims at contributing to the reduction of the subjectivity found in the definition of the benchmarks used in Building Sustainability Assessment (BSA) methods, and it is applied in the Portuguese context. These benchmarks will be used in the development of a Portuguese HBSA method.
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.
Resumo:
This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.