2 resultados para BMD
em Universidade do Minho
Resumo:
Background Several studies link the seamless fit of implant-supported prosthesis with the accuracy of the dental impression technique obtained during acquisition. In addition, factors such as implant angulation and coping shape contribute to implant misfit. Purpose To identify the most accurate impression technique and factors affecting the impression accuracy. Material and Methods A systematic review of peer-reviewed literature was conducted analyzing articles published between 2009 and 2013. The following search terms were used: implant impression, impression accuracy, and implant misfit. A total of 417 articles was identified, 32 were selected for review. Results All 32 selected studies refer to in vitro studies. Fourteen articles compare open and closed impression technique, 8 advocate the open technique and 6 report similar results. Other 14 articles evaluate splinted and non-splinted techniques; all advocating the splinted technique. Polyether material usage was reported in 9; 6 studies tested vinyl polysiloane and 1 study used irreversible hydrocolloid. Eight studies evaluated different copings designs. Intra-oral optical devices were compared in 4 studies. Conclusions The most accurate results were achieved with two configurations: (1) the optical intra-oral system with powder; and (2) the open technique with splinted squared transfer copings, using polyether as impression material.
Resumo:
The relaxivity displayed by Gd3+ chelates immobilized onto gold nanoparticles is the result of complex interplay between nanoparticle size, water exchange rate and chelate structure. In this work we study the effect of the length of -thioalkyl linkers, anchoring fast water exchanging Gd3+ chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd3+ chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM-1s-1 (30 MHz, 25 ºC) were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles is determined mainly by size. Small nanoparticles (HD= 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD= 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggests that functionalized gold nanoparticles hold great potential for further investigation as MRI Contrast Agents. This study contributes to understand the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd3+ complexes. It is a relevant contribution towards “design rules” for nanostructures functionalized with Gd3+ chelates as Contrast Agents for MRI and multimodal imaging.