47 resultados para Ana Maria Freitas

em Universidade do Minho


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de mestrado em Políticas Comunitárias e Cooperação Territorial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Intervenção Precoce)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dando sequência ao projeto de estudo histórico-arqueológico implementado em 1992 (ver relatórios e memorandos anteriores), realizou-se em 1996 mais uma campanha de escavações arqueológicas. Integralmente financiados pelo Instituto Português do Património Arquitetónico e Arqueológico (IPPAR) e executados pela Unidade de Arqueologia da Universidade do Minho, os trabalhos arqueológicos foram realizados pela seguinte equipa: Luis F. de Oliveira Fontes, arqueólogo; Eurico Nuno Malheiro Machado, téc. Aux.; Arlindo da Rocha Pinheiro, Arnaldo Gomes, José da Costa Pinheiro, Francisco Alves Gomes, José Carlos Dias, José Emílio Correia Coelho, Maria Manuela Gonçalves Ferreira e Miguel Fernando Dias Veiga; Ana Maria P. Fernandes Fontes, José Alfredo Lopes Barbosa e Knor Rocha, desenhadores. Fernando Castro, Isabel Fernandes e Ana Bettencourt prestaram colaboração científica nas áreas da Cerâmica Moderna e Pré-história Recente, respetivamente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Intervenção Precoce)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Intervenção Precoce)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Intervenção Precoce)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Electromagnetism-like (EM) algorithm is a population- based stochastic global optimization algorithm that uses an attraction- repulsion mechanism to move sample points towards the optimal. In this paper, an implementation of the EM algorithm in the Matlab en- vironment as a useful function for practitioners and for those who want to experiment a new global optimization solver is proposed. A set of benchmark problems are solved in order to evaluate the performance of the implemented method when compared with other stochastic methods available in the Matlab environment. The results con rm that our imple- mentation is a competitive alternative both in term of numerical results and performance. Finally, a case study based on a parameter estimation problem of a biology system shows that the EM implementation could be applied with promising results in the control optimization area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose an extension of the firefly algorithm (FA) to multi-objective optimization. FA is a swarm intelligence optimization algorithm inspired by the flashing behavior of fireflies at night that is capable of computing global solutions to continuous optimization problems. Our proposal relies on a fitness assignment scheme that gives lower fitness values to the positions of fireflies that correspond to non-dominated points with smaller aggregation of objective function distances to the minimum values. Furthermore, FA randomness is based on the spread metric to reduce the gaps between consecutive non-dominated solutions. The obtained results from the preliminary computational experiments show that our proposal gives a dense and well distributed approximated Pareto front with a large number of points.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O editorial discute a emergência e os debates em torno das novas profissionalidades em educação e apresenta o número da revista.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão Industrial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta comunicação enquadra-se num estudo em curso no âmbito de uma rede nacional em que participam o Alto Comissariado para as Migrações (ACM) e várias Instituições de Ensino Superior (IES) portuguesas, designada Rede de Ensino Superior em Mediação Intercultural (RESMI). Esta rede surge da constatação da importância da prossecução de políticas de apoio ao acolhimento e integração de migrantes, da promoção do diálogo entre diversas culturas, etnias e religiões e da necessidade de formação e investigação no âmbito da Mediação Intercultural.